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ABSTRACT 

The aim of this research is to develop a computer design model which obtains the 

optimum design of multistorey steel frames by selecting from a standard set of steel 

sections. Strength constraints of American Institute Steel Construction (AISC)-Load 

and Resistance Factor Design (LRFD) specification, displacement constraints and size 

constraint for beam-columns were imposed on frames. 

Harmony search (HS) is a recently developed metaheuristic search algorithm that 

was conceptualized using the musical process of searching for a perfect state of 

harmony. The harmony in music is analogous to the optimization solution vector, and 

the musician’s improvisations are analogous to local and global search schemes in 

optimization techniques. The HS algorithm does not require initial values for the 

decision variables. Furthermore, instead of a gradient search, the HS algorithm uses a 

stochastic random search that is based on the harmony memory considering rate and the 

pitch adjusting rate so that derivative information is unnecessary.  

 The HS algorithm accounts for the effect of the flexibility of the connections and 

the geometric non-linearity of the members. The semi-rigid connections are modelled 

with the Frye–Morris polynomial model. Moreover, two steel frames with extended end 

plate without column stiffeners are designed using HS algorithm. Full Catalog Section 

(FCS) and Selected Catalog Section (SCS) are used to compare the obtained results. 

The results prove that harmony search algorithm is a powerful and effective tools, 

in comparison with genetic algorithm. Also the comparisons showed that the harmony 

search algorithm yielded lighter frame in case of rigid and semi-rigid connections for 

the presented models. In addition, using the Selected Catalog Sections the optimum 

frames are lighter than that of the Full Catalog Sections. Moreover, HS converges to 

optimum designs before the maximum numbers of iterations executed in almost 

designs. 
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 الملخص

المعدنية متعددة الطوابق  تالحل اNمثل لتصميم المنشآ يجادBتھدف الرسالة لتطوير نموذج رياضي 

والتحمل  بعادNزاحة والترخيم واBاكما تم استخدام جميع معايير التصميم مثل قيود . الوصXت المرنة ستخدامإب

  .المعدنية تحسب المواصفات القياسية للھيئة اNمريكية للمنشآ

أفضل  يجادBصطناعية Bظھرت طريقة البحث عبر التناغم حديثاً من الموسيقي الطبيعية أو الموسيقي ا

وعليه يتم إختيار الحلول , قيم أولية للبدء في إيجاد الحل اNمثلحيث أن ھذة الطريقة vتحتاج إلي . نغمة موسيقية

  .بطريقة عشوائية تحت قيود معينة

. نشائيةBالمنحني الغير خطي للعناصر اشكل تأثير مرونة الوصXت وتأثير  طريقة البحث عبر التناغم تأخذ

كما . فراي موريس متعدد الحدود وتم نمذجتھا بإستخدام, وتم إستخدام الوصXت الممتدة والغير مدعمة من اNعمدة

Nحزمة عن نشائية اBيتم التصميم بإستخدام كتالوجين أحدھما يشمل جميع العناصر وا�خر يفصل العناصر ا

  .اNعمدة وسوف يتم مقارنة الحل اNمثل لكل منھما

vنھا تعطي أوزان أقل للمنشآ , أثبتث طريقة البحث عبر التناغم مدي قوتھا بالمقارنة مع الخوارزمية الجنية

ضافة إلي ذلك فإن التصميم بإستخدام كتالوج العناصر Bبا. والوصXت المرنة في حالة الوصXت المثبثة كلياً 

وعXوة علي ذلك  فإن طريقة البحث تصل إلي . نشائية المختارة يعطي أوزان أقل من كتالوج العناصر المكتملةBا

  .نتھاء من جميع الدورات المقررة لھاBالحل اNمثل قبل ا
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CHAPTER 1 : INTRODUCTION 

1.1     General. 

The structural response of a steel frame is closely related to the behaviour of its 

beam to column connections. The realistic modelling of a steel frame, therefore, 

requires the use of realistic connection modelling if an accurate response of the frame is 

to be obtained. Steel connections are assumed either perfectly pinned or fully rigid in 

most design of steel frames. This simplification leads to an incorrect estimation of 

frame behaviour. In fact, the connections are between the two extreme assumptions and 

possess some rotational stiffness. Bolted and welded connections rotate at an angle due 

to applied bending moment. This connection deformation has negative effect on frame 

stability, as it increases drift of the frame and causes a decrease in effective stiffness of 

the member which is connected to the joint.  

An increase in frame drift will multiply the second order (P-∆) effects of beam 

column members and thus will affect the overall stability of the frame. Hence, the non-

linear features of beam to column connections have important function in structural 

steel design. AISC-LRFD specification describes three types of steel constructions: 

rigid-frame (fully restrained), simple framing (unrestrained) and semi-rigid framing 

(partially restrained) [1]. This specification requires that the connections of partially 

restrained construction have a flexibility intermediate in degree between the rigidity 

and the flexibility, and this type of analyses may need non-elastic (non-linear) 

deformations of structural steel parts.  

Most experiments have shown that the M-Ɵr curve is non-linear in the whole 

domain and for all types of connections [2-5]. As a result, modelling of the nodal 

connection is vital for the design and accuracy in the frame structure analysis. In the 

present study, the semi-rigid connections are modeled with the Frye–Morris polynomial 

model [6, 7].  

 Apart from connection non-linearity’s, the effects of geometrical non-linearity of 

the beams and columns are also of practical interest. Structural analysis that includes 

geometrical non-linearity is termed second-order analysis or P-delta (P-∆) analysis. 

Geometrical non-linearity’s occurred when members bend and the structure sways or 

deflects laterally under loading. The lateral displacement of the column results in 

second- order moment to the column which can be calculated from the applied load 

multiplied by the appropriate lateral displacement. Hence, the non-linear features of 

beam to column connections have important function in structural steel design. 

Harmony search is a music-based metaheuristic optimization algorithm. It was 

inspired by the observation that the aim of music is to search for a perfect state of 

harmony, such as during jazz improvisation.  Harmony Search (HS) algorithm is 
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applied to obtain the optimum design of steel frames. The design algorithm obtains the 

minimum weight of the frame by selecting a standard set of steel sections such as 

American Institute of Steel Construction (AISC). Strength constraints of AISC-Load 

and Resistance Factor Design (LRFD) specification, displacement constraints and also 

size constraint for beam-columns will be imposed on frames [1, 8 and 9]. 

1.2     Problem statement. 

The processes of obtaining the optimum design of structures are very complex to 

solve by hand, due to large number of design variables, objectives. Typically, the 

design is limited by constraints such as the choice of material, feasible strength, 

displacements, deflection, size constraints, load cases, support conditions, and true 

behaviour of beam to column connection. Hence, one must decide which parameters 

can be modified during the optimization process. Usually, structural optimization 

problems involve searching for the minimum of the structural weight in steel structure. 

This minimum weight design is subjected to various constraints with respect to 

performance measures, such as stresses and displacements, and restricted by practical 

minimum cross-sectional areas or dimensions of the structural members or components. 

This Research considers a Harmony Search (HS) algorithm based approach for 

optimizing the size and configuration of structural systems with discrete design 

variables [10-13]. 

1.3     Motivation 

Design optimization methods have been used to obtain more economical designs 

since 1970s [14-15]. Numerous algorithms have been developed for accomplishing the 

optimization problems in the last four decades. The early works on the topic mostly use 

mathematical programming techniques or optimality criteria with continuous design 

variables. These methods utilize gradient of functions to search the design space.  

Today's competitive world has forced the engineers to realize more economical 

designs and designers to search/develop more effective optimization techniques. As a 

result, heuristic search methods emerged in the first half of 1990s [16-17]. 

A new meta-heuristic search algorithm called harmony search has been 

developed by Geem et al. [10].  Harmony search (HS) bases on the analogy between 

the performance process of natural music and searching for solutions to optimization 

problems. HS can be easily programmed and adopted for engineering problems.  

The main Advantages of HS are summarized as:  

1. HS obtains a new design considering all existing designs. 

2. HS takes into account each design variable independently. 

3. HS does not code the parameters, HS uses real value scheme 
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4. HS updates its memory after each design is generated. 

1.4     The objectives of this research. 

The main aim of the current study to develop a computer design model which 

obtains the optimum frame weight by selecting a standard set of steel sections and 

satisfy strength constraints of AISC Load and Resistance Factor Design (LRFD) 

specification, displacement constraints, beam deflection and also size constraint for 

columns and beam-column were imposed on frames. Harmony search method will be 

used in this research to obtain the optimum design. 

The objectives of this research are:  

1. Develop a computer model which designs steel framed structures with rigid and 

semi rigid connections. 

2. Build up the Harmony search algorithm and connect it to the design model. 

3. Carry out validation and verification of the developed models. 

4. Compare the optimization results with conventional optimization technique. 

1.5     Research scope. 

The scope of study for this research includes:  

1. Linear and geometric non-linear behaviour of steel Structures. 

2. Two-dimensional planer frame. 

3. Semi-rigid beam-column connection. 

4. Rigid column base. 

1.6     Methodology 

To achieve the objectives of this research, the following tasks will be executed: 

1. Conduct a literature survey for optimization using harmony search technique, 

modes of simulating semi rigid connection. 

2. Build up the computer model. 

3. Build up the suitable harmony search algorithm. 

4. Conduct the verification and validation the developed models. 

5. Compare the optimization results with conventional design using structural 

design packages. 

6. Draw conclusion and recommendation. 
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1.7     Content of thesis. 

Chapter 2 of this thesis discusses the literature review. Chapter 3 discusses 

Harmony Search algorithm. Chapter 4 describes modelling of steel frame structure. 

Chapter 5 describes formulation of the optimization problem. Chapter 6 presents 

Analysis result and discussion.  In the end, Chapter 7 presents conclusions and future 

direction.  
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CHAPTER 2 : LITERATURE REVIEW 

2.1     Introduction. 

The structural response of a steel frame is closely related to the behaviour of its 

beam-to-column connections. Therefore, the realistic modelling of a steel frame 

requires the use of realistic connection modelling if an accurate response of the frame is 

to be obtained. Experiments have shown that the actual behaviour lies somewhere 

between fully fixed and fully pinned [2-5]. The effect of connection flexibility must be 

taken into account in the analysis and design procedures. A beam-to-column 

connection is generally subject to axial force, shear force, bending moment and torsion. 

However, for practical purposes, only the effect of moment on the rotational 

deformation of connections needs to be considered. This is because the effect of torsion 

can be excluded in-plane study. Moreover, the effect of axial and shear forces are 

usually small compared to that of the bending moment [6]. 

2.2     AISC-LRFD specification of connections. 

 AISC-LRFD specification describes three types of steel constructions: simple 

framing (unrestrained), rigid-frame (fully restrained-FR) and semi-rigid framing 

(partially restrained-PR) [1].  

        2.2.1     Simple connections. 

A simple connection transmits a negligible moment across the connection. In the 

analysis of the structure, simple connections may be assumed to allow unrestrained 

relative rotation between the framing elements being connected. A simple connection 

shall have sufficient rotation capacity to accommodate the required rotation determined 

by the analysis of the structure. Inelastic rotation of the connection is permitted. 

        2.2.2     Moment connections. 

A moment connection transmits moment across the connection. Two types of 

moment connections are specified below. 

1. Fully-Restrained (FR) Moment Connections transfers moment with a 

negligible rotation between the connected members. In the analysis of the 

structure, the connection may be assumed to allow no relative rotation. An 

FR connection shall have sufficient strength and stiffness to maintain the 

angle between the connected members at the strength limit states. 

2. Partially-Restrained (PR) Moment Connections transfer moments, but the 

rotation between connected members is not negligible. In the analysis of the 

structure, the force-deformation response characteristics of the connection 

shall be included. The response characteristics of a PR connection shall be 
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documented in the technical literature or established by analytical or 

experimental means. The component elements of a PR connection shall have 

sufficient strength, stiffness, and deformation capacity at the strength limit 

states. 

Figure 2.1 shows that the connection rotates by an amount Ɵr when a moment M 

is applied. The angle Ɵr corresponds to the relative rotation between the beam and the 

column at the connection. The rotational distortion of the connection affects the drift of 

the frame and brings about redistribution of moments between column and beam. As a 

result, it is certainly more realistic to assume semi-rigid connection models for beam-to 

column connections in the analysis and design of steel frames. 

                     

Figure 2. 1: Rotational deformation of connection. 

2.3     Types of beam-column connections. 

There are several types of beam to column connections, which are commonly 

used in fabrication steel work; namely single web angle, double web angle, header 

plate, top and seat angles, top and seat angle with double web angles, extended end pate 

without column stiffeners, extended end plate with column stiffeners and T-stub 

connection. 

        2.3.1     Single web angle connection. 

This connection is made by an angles connected to the beam web and then 

connected to the column flange, as shown in Figure 2.2. This connection represents a 

very flexible joint [7]. 

Major geometric parameters, which influence single web angle behaviour, have 

been identified as:  

I. Number of beam web bolts. 

II. Angle plate thickness and depth. 
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III. Column flange or web thickness. 

 

Figure 2. 2: Single web angle connection. 

        2.3.2     Double web angle connection. 

This connection is made by two angles connected to the beam web and then 

connected to the column flange, as shown in Figure 2.3. The earliest tests on double 

web-angle connections were conducted by Rathbun [18], using rivets as fasteners. 

Nowadays, high strength bolts are used [19]. 

Major geometric parameters, which influence double web angle behaviour, have 

been identified as:  

I. Number of beam web bolts. 

II. Angle thickness and depth. 

III. Column flange or web thickness. 

IV. Gauge distance of column bolts. 

 

Figure 2. 3: Double web angle connection. 

        2.3.3     Header plate connection. 

A header plate connection consists of an end plate, whose length is less than the 

depth of the beam, welded to the beam and bolted to the column; also, it may be welded 

after coping the beam web, as shown in Figure 2.4. A header plate connection used to 

transfer the reaction of the beam to the column. The behaviours of these connections 

are similar to those of double web angle connections [2]. 
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Major geometric parameters, which influence header plate behaviour, have been 

identified as:  

I. Plate thickness. 

II. Plate depth. 

III. Beam-web thickness. 

IV. Gauge distance of column bolts. 

 

Figure 2. 4: Header Plate connection. 

        2.3.4     Top and seat angle connection. 

The AISC specification describes the top and seat angle connections as (a) the 

seat angle transfers only vertical reaction and should not give significant restraining 

moment at the end of the beam; (b) the top angle is merely used for lateral stability and 

is not considered to carry any gravity loads. A typical top and seat angle connection is 

shown in Figure 2.5. 

Major geometric parameters, which influence top and seat angle behaviour, have 

been identified as:  

I. Number of beam flange bolts. 

II. Thickness of angle 

 

Figure 2. 5: Top and seat angle connection. 
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        2.3.5     Top and seat angle with double web angle connection. 

Top and seat angle can be coupled with double web angles to take heavier loads 

as shown in Figure 2.6.  

Major geometric parameters, which influence top and seat angle with double web 

angle behaviour, have been identified as:  

I. Thickness and depth of angles. 

II. Column flange or web thickness. 

III. Gauge distance of bolts in vertical angle leg. 

 

Figure 2. 6: Top and seat angle with double web angle connection. 

        2.3.6     Extended end plate without column stiffeners connection. 

The extended end plate connections are welded to the beam end along both 

flanges and web in the fabricator’s shop and bolted to the column in the field. This type 

of connection is extending in both tension and compression sides, as shown in Figure 

2.7. 

Major geometric parameters, which influence extended end plate without column 

stiffeners behaviour, have been identified as:  

I. Plate thickness. 

II. Column flange thickness. 

III. Moment arm for column flange bolts. 

        2.3.7     Extended end plate with column stiffeners connection. 

The extended end plate connections are welded to the beam end along both 

flanges and web in the fabricator’s shop and bolted to the column in the field and 

stiffened column flange. This type of connection is extending in both tension and 

compression sides, as shown in Figure 2.8. 
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Figure 2. 7: Extended end plate without column stiffeners connection. 

Major geometric parameters, which influence extended end plate with column 

stiffeners behaviour, have been identified as:  

I. Plate thickness. 

II. Column flange thickness. 

III. Moment arm for column flange bolts. 

IV. Column stiffness depth and thickness. 

 

Figure 2. 8: Extended end plate with column stiffeners connection. 

        2.3.8     T-stub connection. 

T-stub connection are similar to top and seat angles connection configuration 

expect that the cut of Tee section is employed instead of angles as shown in Figure 2.9. 

This connection represents a very rigid joint [7]. 

Major geometric parameters, which influence T-stub behaviour, have been 

identified as:  

I. T-stub thickness. 

II. Width of T-stub. 



www.manaraa.com

11 
 

 

Figure 2. 9: T-stub connection. 

2.4     Behaviour of steel connections. 

All types of connections exhibit non-linear moment-rotation behaviour that falls 

between the two extreme cases of fully fixed and ideally pinned. Experiments have 

shown the relationship between the moment and the beam-to-column joint rotation is 

non-linear in nature [2-5]. In general, the connection is dependent on the geometric 

parameters of the elements used in the connections, such as bolt size and dimensions of 

end plate or angle sections etc... . Relative moment-rotation curves of extensively used 

semi-rigid connections are shown in Figure. 2.10 [7].  

Relative Rotation

M
o
m
e
n
t T-Stub

End plate with column stiffeners

End Plate without column stiffeners

Top and seat angles with

Top and seat angles

Header plate

Double web angle

single web angle

double web angles

 

Figure 2. 10: Moment-rotation curves of semi-rigid connections. 
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2.5     Mathematical modelling of semi-rigid connections. 

There are several mathematical connection models as the following: 

        2.5.1     Linear model. 

The linear models were proposed by Batho, Rathbun, and Baker [18]. The bi-

linear models were proposed by Melchers, Kaur, Romstad, Subrmanian, Lui and Chen 

[20]. The piecewise linear models were proposed by Razzaq. 

        2.5.2     Polynomial model. 

Frye and Morris [7] used odd power polynomial to represent the moment-rotation 
curve as, 

5
3

3
2

1
1 )()()( KMcKMcKMcr ++=θ  .....................................(2.1) 

Where K is standardization constant which depends upon connection type and 

geometry; c1, c2, c3 are the curve fitting constants.  

        2.5.3     Cubic B-spline model. 

This model can be fit test data well. However, a large number of data are required 

in the curve fitting process [21]. 

        2.5.4     Power model. 

The power model Proposed by Batho and Lash. has the following expression : 

b

r aM=θ  
.....................................(2.2) 

Where the two parameters a and b are used to fit the curve, subjected to the 

condition, a > 0, b > 1 

        2.5.5     Exponential model. 

This model gives a good curve fitting with test curve up to and including the 

strain-hardening range. 

Chen and lui multi-paramter model has form: 
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Where M0 =strating value of connection moment, RKf = strain hardening stiffness, a = 

scaling factor, Cj= curve fitting constant. 

2.6     Optimization of steel structure. 

Today’s competitive world has forced the engineers to realize more economical 

designs and designers to search/develop more effective optimization techniques. As a 
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result, heuristic search methods emerged in the first half of 1990s. Heuristic search 

algorithms have been applied to various optimum design problems since then. Genetic 

algorithms (GAs), simulated annealing (SA) and ant colony optimization (ACO) that 

appeared as optimization tools are quite effective in obtaining the optimum solution of 

discrete optimization problems. One of the applications of heuristic search methods is 

optimum design of steel frames [16, 17 and 22-25]. 

Several researches focusing on the behaviour of the connections have been made 

to correlate the data obtained by experimental and theoretical analysis.  

Saka, (2009) [13], studied the optimum design of rigid steel frames using 

harmony search algorithm according to British Standard BS5950. The harmony search 

method is a numerical optimization technique developed recently that imitates the 

musical performance process which takes place when a musician searches for a better 

state of harmony. Jazz improvisation seeks to find musically pleasing harmony similar 

to the optimum design process, which seeks to find the optimum solution. The optimum 

design algorithm developed imposes the behavioral and performance constraints in 

accordance with BS5950. The algorithm presented selects the appropriate sections for 

beams and columns of the steel frame from the list of 64 Universal Beam sections and 

32 Universal Column sections of the British Code. The optimum results obtained by the 

harmony search algorithm are lighter than the one obtained by the simple genetic 

algorithm. 

Hayalioglu and Degertekin (2005) [26] presented a minimum cost design of steel 

frames with semi-rigid connections and column bases via genetic optimization. The 

design algorithm obtains the minimum total cost, which comprises total member, plus 

connection costs by selecting suitable sections from a standard set of steel sections such 

as American Institute of Steel Construction (AISC) wide-flange (W) shapes. 

Displacement and stress constraints of AISC-Load and Resistance Factor Design 

(LRFD) specification and size constraints for beams and columns are imposed on the 

frame. The Frye and Morris polynomial model and a linear spring model are used for 

semi-rigid connections and column bases respectively. It was found from the results 

that reducing connection stiffness causes increase in both optimum frame cost and the 

sway. The reason for this is that more flexible connections increase the displacements 

of the frame, but these displacements are adjusted to their restrictions by the 

optimization process assigning larger sections to the members. 

Lee and Geem (2005) [11] suggested a structural optimization method based on 

the harmony search (HS) meta-heuristic algorithm, which was conceptualized using the 

musical process of searching for a perfect state of harmony. The HS algorithm does not 

require initial values and uses a random search instead of a gradient search, so 

derivative information is unnecessary. Various truss examples with fixed geometries 

are presented to demonstrate the effectiveness and robustness of the new method. The 
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results indicated that the suggested technique is a powerful search and optimization 

method for solving structural engineering problems compared to conventional 

mathematical methods or genetic algorithm-based approaches. 

Kameshki and Saka (2003) [27] proposed optimum design using a genetic 

algorithm for nonlinear steel frames with semi-rigid connections. A genetic algorithm 

based optimum design method is presented for nonlinear multistory steel frames with 

semi-rigid connections. The design algorithm obtains optimum frame by selecting 

appropriate sections from standard steel section tables while satisfying the 

serviceability and strength limitations specified in British standard BS5950. The 

algorithm accounts for the effect of the flexibility of the connections and the geometric 

non-linearity of the members. The semi-rigid connections are modeled with the Frye–

Morris polynomial model.  

The result indicates that when the overall gravity loading is much larger 

compared to lateral loading and is dominant in the design of the frame, linear semi-

rigid frames are lighter than linear rigid frames. On the other hand, if the overall gravity 

loading is not that large compared to lateral loading, geometric nonlinearity in the 

frame design yields lighter frames compared to linear frames.  

2.7     Harmony search algorithm in structural engineering. 

A new meta-heuristic search algorithm called harmony search has been 

developed recently. Harmony search (HS) bases on the analogy between the 

performance process of natural music and searching for solutions to optimization 

problems. HS was developed by Geem et al. [10] for solving combinatorial 

optimization problems. HS can be easily programmed and adopted for engineering 

problems. Although HS has been applied to a diverse range of engineering problems; 

such as river flood model [28], vehicle routing [29], optimal design of water 

distribution networks [30], optimal scheduling of multiple dam system [31], 

minimization for slope stability analysis [32], optimized the truss structures with 

discrete design variables [33], harmony search algorithm for optimum geometry design 

of geodesic domes and rigid steel frames [13, 34]. 

2.8     Concluding remarks. 

Based on the study, which carried out on the connection behaviour and the 

connection types from the literature, it is found that extended end plate connections are 

widely used in steel structures. The literature review showed that Frye-Morris 

polynomial model is a powerful tool to represent the moment-rotation behaviour of a 

connection. On the other hand, a new meta-heuristic algorithm harmony search HS 

showed powerful results in structure optimization problem. 
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CHAPTER 3 : HARMONY SEARCH ALGORITHM 

3.1     Introduction. 

Over the last four decades, a large number of algorithms have been developed to 

solve various engineering optimization problems. Most of these algorithms are based 

on numerical linear and nonlinear programming methods that require substantial 

gradient information and usually seek to improve the solution in the neighborhood of a 

starting point. These numerical optimization algorithms provide a useful strategy to 

obtain the global optimum in simple and ideal models. Many real-world engineering 

optimization problems, however, are very complex in nature and quite difficult to solve 

using these algorithms. If there is more than one local optimum in the problem, the 

result may depend on the selection of an initial point, and the obtained optimal solution 

may not necessarily be the global optimum. Furthermore, the gradient search may 

become difficult and unstable when the objective function and constraints have 

multiple or sharp peaks. The computational drawbacks of existing numerical methods 

have forced researchers to rely on meta-heuristic algorithms based on simulations to 

solve engineering optimization problems. The common factor in meta-heuristic 

algorithms is that they combine rules and randomness to imitate natural phenomena. To 

solve difficult and complicated real-world optimization problems, however, new 

heuristic and more powerful algorithms based on analogies with natural or artificial 

phenomena must be explored.  

The following sections, discuss a brief overview of some existing meta-heuristic 

algorithms. Then the harmony search will be explained in details. 

3.2     Heuristic optimization techniques. 

Broadly speaking, all heuristic search algorithms are inspired from natural 

phenomenon. The name of each heuristic method is indicative of its underlying 

principle.  

        3.2.1     Genetic algorithm (GA). 

Genetic algorithms (GA) are based on evolution theory of Darwin’s. They were 

proposed by Holland [22]. The main principle of GAs is the survival of robust ones and 

the elimination of the others in a population. GAs are able to deal with discrete 

optimum design problems and do not need derivatives of functions, unlike classical 

optimization. However, the procedure for the genetic algorithm is time consuming and 

the optimum solutions may not be global ones, but they are feasible both 

mathematically and practically. They were used for the optimum design of semi-rigid 

steel frames under the actual constraints of design codes [26, 27 and 35-37]. 
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        3.2.2     Simulating annealing algorithm (SA). 

Simulating annealing (SA) is an accepted local search optimization method. 

Local search is an emerging paradigm for combinatorial search which has recently been 

shown to be very effective for a large number of combinatorial problems. It is based on 

the idea of navigating the search space by iteratively stepping from one solution to one 

of its neighbours, which are obtained by applying a simple local change to it. The SA 

algorithm is inspired by the analogy between the annealing of solids and searching the 

solutions to optimization problems. SA was developed by Metropolis et al. [23] and 

proposed by Kirkpatrick et al. [24] for optimization problems. SA was applied to the 

optimum design of steel frames under the actual design constraints and loads of code 

specifications [38-43].  

        3.2.3     Ant colony optimization algorithm (ACO). 

Ant colony optimization (ACO) is an application of ant behaviour to the 

computational algorithms and is able to solve discrete optimum structural problems. It 

also has additional artificial characteristics such as memory, visibility and discrete time. 

ACO was originally put forward by Dorigo et al. [25] for optimization problems. The 

applications of ACO to the structural optimization were about the optimal design of 

planar/space trusses and frames [44-46].  

        3.2.4     Harmony search optimization algorithm. 

Recently, Geem et al. [10] developed a new harmony search (HS) meta-heuristic 

algorithm that was conceptualized using the musical process of searching for a perfect 

state of harmony. The harmony in music is analogous to the optimization solution 

vector, and the musician’s improvisations are analogous to local and global search 

schemes in optimization techniques. The HS algorithm does not require initial values 

for the decision variables. Furthermore, instead of a gradient search, the HS algorithm 

uses a stochastic random search that is based on the harmony memory considering rate 

and the pitch adjusting rate (defined in harmony search meta-heuristic algorithm 

section) so that derivative information is unnecessary. Compared to earlier meta-

heuristic optimization algorithms, the HS algorithm imposes fewer mathematical 

requirements and can be easily adopted for various types of engineering optimization 

problems. The following sections present the basics of harmony search algorithm. 

3.3     Basic of harmony search algorithm. 

Harmony is defined as an attractive sound made by two or more notes being 

played at the same time. Do, Re, Mi, Fa, Sol, La, and Si are called notes which 

represent a single sound. The HS algorithm imitates musical improvisation process 

where the musicians try to find a better harmony. All musicians always desire to attain 
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the best harmony, which could be accomplished by numerous practices. The pitches of 

the instruments are changed after the each practice.  

In music improvisation, each player sounds any pitch within the possible range, 

together making one harmony vector as shown in Figure. 3.1. If all the pitches make a 

good harmony, that experience is stored in each player’s memory, and the possibility to 

make a good harmony is increased next time. Similarly, in engineering optimization, 

each decision variable initially chooses any value within the possible range, together 

making one solution vector. If all the values of decision variables make a good 

solution, that experience is stored in each variables memory, and the possibility to 

make a good solution is increased next time. 

 

Figure 3. 1: Analogy between music improvisation and engineering optimization. 

3.4     Harmony search optimization algorithm in steel structures. 

Figure 3.2 illustrates the analogy between music improvisation and steel design. 

As explained by Lee and Geem [11], harmony memory (HM) is the most important part 

of HS. Jazz improvisation is the best example for clarifying the harmony memory. 

Many jazz trios consist of a guitarist, double bassist and pianist. Each musician in the 

trio has different pitches: guitarist [Fa, Mi, La, Sol, Do]; double bassist [Mi, Do, La, Si, 

Re]; pianist [Si, Re, Mi, La, Do]. Let guitarist randomly play Sol out of its pitches [Fa, 

Mi, La, Sol, Do], double bassist Si out of [Mi, Do, La, Si, Re] and pianist Re [Si, Re, 

Mi, La, Do]. Therefore, the new harmony [Sol, Si, Re] becomes another harmony 

(musically G-chord).  

If the new harmony is better than the existing worst harmony in the HM, new 

harmony is included in the HM and the existing worst harmony is excluded from the 

HM. The process is repeated until the best harmony is obtained.  
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Figure 3. 2: Analogy between harmony memory and steel frame design process 

For example, in case of a steel frame design process, which consists of three 

different design variables, the first design variable is the columns of the first storey, the 

second design variable is the columns of the second storey and the third design variable 

is the all beams. The design variables are selected from a standard set of steel sections 

such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Let 

us assume W14×90, W14×48 and W27×80 are selected from the section list as the first, 

second and third design variables respectively. Thus, a new steel design is created 

[W14×90, W14×48, and W27 × 80]. If the new design is better than existing worst 

design which is the one with the highest objective function value, the new design is 

included and worst design is excluded from the steel design process. This procedure is 

repeated until terminating criterion is satisfied.  

An analogy between the music improvisation process and the optimum design of 

steel frames can be established in the following way: The harmony denotes the design 
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vector while the different harmonies during the improvisation represent the different 

design vectors throughout the optimum design process. Each musical instrument 

denotes the design variables (steel sections) of objective function. The pitches of the 

instruments represent the design variable’s values (steel section no.). A better harmony 

represents local optimum and the best harmony is the global optimum. The following 

sections describe the harmony search steps. 

        3.4.1     Initialize the harmony search parameters. 

The HS algorithm parameters are chosen in this step, they are selected depending 

on the problem type. The harmony search comprises a number of parameters. These 

parameters are as follows; 

� Harmony memory size (HMS). 

� Harmony memory consideration rate (HMCR). 

� Pitch adjusting rate (PAR).  

� Stopping criteria (number of improvisation).  

        3.4.2     Initialize harmony memory. 

The harmony memory (HM) matrix is filled with randomly generated designs as 

the size of the harmony memory size (HMS). 

Harmony memory matrix is initialized. Each row of harmony memory matrix 

contains the values of design variables which are randomly selected feasible solutions 

from the design pool for that particular design variable. Hence, this matrix has n 

columns where n is the total number of design variables and HMS rows which is 

selected in the first step. HMS is similar to the total number of individuals in the 

population matrix of the genetic algorithm. The harmony memory matrix has the 

following form: 

 

……………………(3.1) 

 

Each row represents a steel design in the HM. x1, x2,…..,xHMS-1 ,xHMS and φ(x1), 

φ(x2),…, φ(xHMS-1), φ(xHMS) are designs and the corresponding unconstrained objective 

function value, respectively. The steel designs in the HM are sorted by the 

unconstrained objective function values which are calculated by using Eqn. (3.1) (i.e. 

φ(x1), φ(x2),.., φ(xHMS)). The aim of using HM is to preserve better designs in the search 

process. 
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        3.4.3     Improvise a new harmony. 

A new harmony[ ]  nh

ng

nhnhnh xxxx ........,, 21=  is improvised from either the HM or 

entire section list. Three rules are applied for the generation of the new harmony. These 

are HMCR, PAR and rn. In the HMCR, the value of first design variable nhx1  for the 

new harmony is chosen from any value in the HM (i.e.  HMSHMS xxxx 1
1

1
2
1

1
1 ,,, −  or entire 

section list [xSL]). [xSL] which represents the section list. The other design variables of 

new harmony  nh

ng

nh

ng

nh xxx ........,, 12 − are chosen by the same rationale. HMCR is applied 

as follows 

{ } HMCRrnifxxxxx HMS

i

HMS

iii

nh

i ≤∈ − ,,......., 121

 
…………….(3.2) 

HMCRrnifxx sl

nh

i >∈  

At first, a random number (rn) uniformly distributed over the interval [0,1] is 

generated. If this random number is equal or less than the HMCR value, i-th design 

variable of new design [xnh] selected from the current values stored in the i-th column 

of HM. If rn is higher than HMCR, i-th design variable of new design [xnh] is selected 

from the entire section list [XSL]. For example, an HMCR of 0.90 shows that the 

algorithm will choose the i-th design variable (i.e. steel section) from the HM or from 

the entire section list with a 10% probability. A value of 1.0 for HMCR is not 

appropriate because of 0% possibility that the new design may be improved by values 

not stored in the HM [11].  

Any design variable of the new harmony, [ ]  nh

ng

nhnhnh xxxx ........,, 21=  which 

obtained by the memory consideration is examined to determine whether it is pitch-

adjusted or not. Pitch adjustment is made by pitch adjustment ratio (PAR) which 

investigates better design in the neighbouring of the current design. PAR is applied as 

follows current stored steel sections in the i-th column of the HM with a 90% 

probability. Pitch adjusting decision for nh

ix  as follow: 

{ }PARrnifNoPARrnifYesxnh

i >≤→ , ….…….......................…………..(3.3) 

A random number (rn) uniformly distributed over the interval [0,1] is generated 

for `1
nhx . If this random number is less than the PAR, nh

ix is replaced with its neighbour 

steel section in the section list. If this random number is not less than PAR, nh

ix remains 

the same. The selection of neighbour section is determined by neighbouring index. A 

PAR of 0.45 [13] indicates that the algorithm chooses a neighbour section with a 

45%×HMCR probability. For example, if nh

ix is W14X68, neighbouring index is -2 or 2 

and the section list is [W14X90, W14X82, W14X74, W14X68, W14X61, W14X53, 

W14X48], the algorithm will choose a neighbour one of the section (W14X82, 
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W14X74 or W14X61, W14X53) with a 45%×HMCR probability, or remain the same 

section(W14X68) with a (100% - 45%)×HMCR probability. HMCR and PAR 

parameters are introduced to allow the solution to escape from local optima and to 

improve the global optimum prediction of the HS algorithm [20]. 

        3.4.4     Update the harmony memory 

If the new harmony [ ]  nh

ng

nhnhnh xxxx ........,, 21= is better than the worst design in 

the HM, the new design is included in the HM and the existing worst harmony is 

excluded from the HM.  

        3.4.5     Termination criteria 

Steps 3.4.3 and 3.4.3 are repeated until the termination criterion is satisfied. In 

this thesis, two termination criteria are used for HS. The first one stops the algorithm 

when a predetermined total number of searches (i.e. total number of iterations) are 

performed. The second criterion stops the process before reaching the maximum search 

number, if lighter frame is not found during a definite number of searches in HS. If one 

of these criteria is satisfied, the algorithm is terminated and the current optimum is 

defined as the final optimum design. Detailed flow charts for the HS with discrete 

design variables as shown in Figure 3.3.  
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Figure 3. 3: Flow-charts for the HS with discrete design variables. 
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3.5     Comparison between the harmony search algorithm and other 
optimization techniques. 

        3.5.1     Harmony search (HS) and genetic algorithm (GA). 

1. HS generates a new design considering all existing designs, while GA 

generates a new design from a couple of chosen parents by exchanging 

the artificial genes. 

2. HS takes into account each design variable independently. On the other 

hand, GA considers design variables depending upon building block 

theory [47].  

3. HS does not code the parameters, whereas GA codes the parameters. That 

is, HS uses real value scheme, while GA uses binary scheme (0 and 1).  

        3.5.2     Harmony search (HS) and simulating annealing (SA). 

1. HS obtains a new design considering all existing designs as mentioned 

above, while SA generates a new design considering few neighbour 

designs of current design.  

2. HS preserves better designs in its memory whereas SA does not have 

memory facility.  

        3.5.3     Harmony search (HS) and ant colony optimization (ACO).  

1. ACO develops new designs considering the collective information 

obtained from the pheromone trails of ants, while HS develops the new 

designs considering the former designs stored in its memory, similar to 

ACO, but it also takes into account all the design variable databases with 

a predetermined probability. This facility provides a chance to improve 

the design by the values not stored in HS memory.  

2. Local search process is applied to each other design with a predetermined 

probability in the HS, whereas ACO uses local search for only some elite 

designs.  

3. HS updates its memory after each design is generated. On the other hand, 

ant colony is updated after as many designs as the numbers of ants in the 

colony are performed.  

These differences provide a more effective and powerful approach for HS than 

GA, SA and ACO. For the HS superiority to be proven, two steel frames with rigid and 

semi-rigid connections are presented in this study. The two frames are also investigated 

by Kameshki and Saka (2003) using Genetic Algorithm. Moreover the effectiveness 

and robustness of harmony search algorithm, in comparison with genetic algorithm 

(GA) optimization were also studied. 
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CHAPTER 4 : MODELLING OF STEEL FRAME 

STRUCTURS 

4.1     Introduction. 

In partially restrained frames, one of the most critical analysis steps is the 

modelling process. The modelling of any structure begins with an accurate 

representation of its members and components. The most difficult part of structural 

analysis is developing an accurate model that will correctly represent the structural 

system. In many cases, it is impossible to represent any building exactly with a model 

without making some general assumptions. For instance, structural materials are 

assumed to deform according to basic mechanics of materials. This assumption is 

reasonable for modelling purposes but in actuality may deviate due to weather 

conditions, construction and the actual consistency of the material. In developing a 

model, there are different levels of precision that can be achieved. This usually depends 

largely on the complexity of the structure, time allocated for design, cost of engineering 

and the uniqueness of the geometry or loads.  

4.2     Modelling of steel frame structures with ANSYS. 

Some of the basic frame analysis methods such as slope deflection, moment 

distribution, stiffness and flexibility methods can be modified to work with partially 

restrained connections but tend to be very tedious and complicated. Because most 

structural engineering use computers in the analysis of frames, there are several 

software packages designed to analyze structures such as SAP2000 and STAAD. The 

problem is that they cannot represent partially restrained connection behaviour with 

moment-rotational curve.  

In this study, ANSYS software was used to model various elements and 

connection of steel structures. ANSYS is powerful in representing the partially 

restrained connections with a non-linear spring element. Also, ANSYS is used as its 

reason for second-order behaviour is evaluated accurately for partially restrained 

frames. 

        4.2.1     ANSYS package. 

The ANSYS [48] program has a comprehensive graphical user interface (GUI) 

that gives users easy and interactive access to program functions, commands, 

documentation, and reference material. An intuitive menu system helps users navigate 

through the ANSYS program. Users can input data using a mouse, a keyboard, or a 

combination of both. 

ANSYS finite element analysis software enables engineers to perform the 

following tasks:  
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� Build computer models or transfer CAD models of structures, products, 

components, or systems. 

� Apply operating loads or other design performance conditions. 

� Study physical responses, such as stress levels, temperature distributions, 

or electromagnetic fields. 

� Optimize a design early in the development process to reduce production 

costs. 

        4.2.2     Elements library. 

The element types are selected from the software based on the expected 

behaviour of members in frame. 

        4.2.2.1     Beam-column element (BEAM3). 

BEAM3 is a uniaxial element with tension, compression, and bending 

capabilities. The element has three degrees of freedom at each node: translations in the 

nodal x and y directions and rotation about the nodal z-axis. The characteristics of 

BEAM3 are as follows: 

� The beam element must lie in an X-Y plane and must not have a zero 

length or area. 

� The beam element can have any cross-sectional shape for which the 

moment of inertia can be computed. However, the stresses are determined 

as if the distance from the neutral axis to the extreme fiber is one-half of 

the height. 

� The element height is used only in the bending calculations. 

� The moment of inertia may be zero if large deflections are not used. 

        4.2.2.2     Non-linear spring element (COMBIN39). 

COMBIN39 is a unidirectional element with nonlinear generalized force-

deflection capability that can be used in any analysis. The element has longitudinal or 

torsional capability in 1-D, 2-D, or 3-D applications. The longitudinal option is a 

uniaxial tension-compression element with up to three degrees of freedom at each 

node: translations in the nodal x, y, and z directions. No bending or torsion is 

considered. The torsional option is a purely rotational element with three degrees of 

freedom at each node: rotations about the nodal x, y, and z axes. No bending or axial 

loads are considered. 

The element is defined by two (preferably coincident) node points and a 

generalized force-deflection curve. The points on this curve (D1, F1, etc.) represent 

force (or moment) versus relative translation (or rotation) for structural analyses. 
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The basic procedures for modelling steel frame structure with ANSYS are 

described in the following points and in Figure 4.1 flow chart. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 4. 1: Flow chart for modelling steel frame structure with ANSYS. 
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        4.2.3     Modelling of steel connections. 

The non-linear behaviour of the partially restrained connection, namely the 

moment rotation curve, is represented by the non-linear spring. By inputting the curve 

as data points to define the spring behaviour, the connection is represented. If the 

connection is very stiff the spring acts as a rigid joint while if the connection is very 

flexible the spring acts as a pin. The use of a spring in this situation allows for the 

representation of any connection more accurately then a typical pinned or rigid joint.  

In the present study, the extend end plate connections without column stiffeners 

will be used and the semi-rigid connections are modeled with the Frye–Morris 

polynomial model [6, 7] as shown in equation (1).  
5

3
3

2
1

1 )()()( KMcKMcKMcr ++=θ  ……...……………(1) 

Where K is standardization constant depends upon connection type and geometry; 

c1, c2, c3 are the curve fitting constants. The values of these constants are given in Table 

4.1 [6, 7]. The values of the coefficients, such as the diameter of bolts, the gauge and 

the geometric dimensions used in the standardization constants are obtained by 

designing each connection in the frame during the optimum design cycles. Each design 

is carried out, with and without considering the geometric non-linearity according to 

the design problem. 

Table 4. 1: Curve fitting constants and standardization constant. 

Connection types 
Curve Fitting Constants 

Unit (in) 

Standardization Constant 

Unit (in) 

   

Extend end plate 

without column 

stiffeners 

C1 = 1.83 x 10-3 

C2 = 1.04 x 10-4 

C3 = 6.38 x 10-6 

K = dg
-2.4 tp

-0.4 db
-1.5 

The non-linear analysis of steel frames takes into account both the geometrical 

non-linearity of beam-column members and non-linearity due to end connection 

flexibility of beam members. The columns of frames are generally continuous and do 

not have any internal flexible connections. However, the beams possess semi-rigid end 

connections, but have small axial forces with a geometric non-linearity of little 

importance. The geometry and size parameters of the extended end plate connections 

without column stiffeners as in Figure 4.2 [6, 7]. 
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Figure 4. 2: Extended end plate without column stiffeners. 

The semi-rigid connections used in the designs are same as Figure 4.2. Fixed and 

some oversized values for bolt size, gauge length and end plate thickness are selected 

during the design process so that they are safe and suitable for every design stage. The 

reason for employing such a fixed values for some of the connection size parameters is 

to shorten the computing time which is already very long due to design, Harmony 

search algorithm and non-linear analysis process.  

On the other hand, the other connection size parameters such as beam height, the 

vertical distance between bolt groups (d, dg) are not fixed during the design process. 

They are calculated or selected depending on the standard steel section assigned to the 

beam throughout the design process. The connection size parameters which remain 

fixed during the optimum design process are given in Table 4.2 depending on the frame 

geometry. 

Table 4. 2: The fixed connection size parameter for all design models. 

Model Connection size parameters (in) 

Ten-storey, one-bay  tp = 1 in dg = d + 6 db = 1.125 in  

Three-storey, two-bay tp = 0.685 in dg = d + 6 db = 1 in 

4.3     Geometric Nonlinearities 

Structural analyses that include geometrical non-linearity’s are commonly termed 

second-order analyses. Geometrical non-linearity occur when members bend and the 

structure sway under loading. This additional displacement in the member causes 

second-order moments.  
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4.4     Material properties. 

Material non-linearity, i.e. nonlinear stress-strain relationship, is a common cause 

of nonlinear structural behavior. Many factors can influence the material stress-strain 

properties, including load history (as in elastoplastic response), environmental 

conditions (such as temperature), and the amount of time that a load is applied (as in 

creep response). Stress-strain relationship can be classified as elastic, rigid plastic and 

elastic-plastic. For an elastic analysis, the stress-strain relationship is linear and the 

material never reaches its yield point. In rigid-plastic model, it is assumed that no 

deformation of the material takes place until the yield stress of the material has been 

reached. For elastic-plastic model, the material initially deforms elastically under 

increasing load and the stress-strain relationship is linear. The material becomes plastic 

when the yield stress of the material is reached. In this thesis used linear stress-strain 

relationship that agree with Kameshki and Saka (2003) [27]. 

4.5     Simulating of semi-rigid connection with SAP2000. 

The problem is that they cannot represent partially restrained connection 

behaviour with moment-rotational curve, but we can simulate the connection using 

secant stiffness [49, 50] as shown in equation (2). 

θ∆
∆

=
M

S
 

……...……………(2) 

The following steps explain the procedures to obtain the secant stiffness 

value: 

1. Obtain a set of moment-rotation values using Frye-Morris polynomial 

model. 

2. Draw moment-rotation relationship as shown in Figure 4.3. 

3. Draw tangent # 1, at the ascending part of the curve. 

4. Draw tangent # 2, at the peak of the curve. 

5. Select the intersection point. 

6. Draw down the rotation value and the moment value from the intersection 

point. 

7. Finally, the new secant stiffness that describes the moment-rotation curve 

as mentioned in equation (2). 
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Figure 4. 3: Moment – rotation curve. 

4.6     Comparison between ANSYS and SAP 2000 model. 

In order to verify the results obtained by the ANSYS model, SAP software was 

used. The verification process was carried out using two models of a portal frame 

namely three-storey, two-bay frame and ten-storey, one-bay frame. 

        4.6.1     Semi-rigid steel frame of three-storey, two-bay model. 

Three-storey, two-bay frame with semi-rigid connection loaded with uniformly 

distributed loads and horizontal loads as shown in Figure 4.4. Table 4.3 presents the 

section properties for the beam-column element are used. The elastic modulus, E, 

30,000 ksi was assumed in the analysis and the Poison ratio, ʋ, is 0.3.  

Table 4. 3: Section properties of three-storey, two-bay frame. 

Type Section 
Area 

( in2 ) 

Moment of Inertia, I 

( in4 ) 

Depth, d 

( in ) 

Column group #1 W12X35 10.3 285 12.5 

Column group #2 W12X26 7.65 204 12.2 

Column group #3 W8X24 7.08 82.7 7.93 

Column group #4 W14X43 12.6 428 13.7 

Column group #5 W12X30 8.79 238 12.3 

Column group #6 W10X22 6.49 118 10.2 

Beam group #1 W16X26 7.68 301 15.7 

ɵ∆ 

∆M 
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Figure 4. 4: Three-storey, two-bay semi-rigid frame. 

To verify and validity of the model. The model was checked by another program 

such as SAP 2000 [51], with Non-linear analysis using the same geometry and loading.  

The moment rotation curve was used as shown in Figure 4.5. 

 

Figure 4. 5: Moment-Rotation curve for beams. 
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Table 4. 4: The secant stiffness value for each beam-column connection.  

Beam Group Section 
Secant Stiffness 

( K.in/rad ) 

Beam group #1 W16X26 6.35x105 

The deformed shape and bending moment for Non-linear analysis, is shown in 

Figure 4.6, 4.7 respectively. A basic ANSYS input file as in Appendix-A. 
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Figure 4. 6: Three-storey, two-bay deformed shape. 

 
Table 4. 5: Tabulates the comparison of horizontal displacements at the upper left 

corner and max bending moment at the column base with semi-rigid frame. 

 

Semi-Rigid Frame Connection 

Non-Linear analysis 

ANSYS 11 SAP 2000, V14 

Upper left corner 

displacement (in) 
1.1929 1.21 

Max Base 

moment (K.in) 
912 905 

* 1 Kips = 4.45 KN   &  1in = 25.4 mm  
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Figure 4. 7: Three-storey, two-bay bending moment. 
 

        4.6.2     Semi-rigid steel frame of ten-storey, one-bay model. 

Ten-storey, one-bay frame with semi-rigid connection loaded with uniformly 

distributed loads and horizontal loads as shown in Figure 4.8. Table 4.6 presents the 

section properties for the beam-column element are used.  

Table 4. 6: Section properties of ten-storey, one-bay frame. 

Type Section 
Area 

( in2 ) 

Moment of Inertia, I 

( in4 ) 

Depth, d 

( in ) 

Column group #1 W27X146 43.1 5660 27.4 

Column group #2 W21X122 35.9 2960 21.7 

Column group #3 W21X101 29.8 2420 21.4 

Column group #4 W18X76 22.3 1330 18.2 

Column group #5 W14X82 24 881 14.3 

Beam group #1 W24X68 20.1 1830 23.7 

Beam group #2 W24X68 20.1 1830 23.7 

Beam group #3 W27X84 24.8 2850 26.7 

Beam group #4 W21X62 18.3 1330 21.0 
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The model was checked by SAP 2000 [51], with linear analysis using the same 

geometry and loading.  
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Figure 4. 8: Ten-storey, one-bay semi-rigid frame. 
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The moment rotation curve for each beam were used as shown in Figure 4.9. 

 

Figure 4.9 1: Moment-Rotation Curve for beam #1, #2. 

 

Figure 4.9 2: Moment-Rotation Curve for beam #3. 
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Figure 4.9 3: Moment-Rotation Curve for beam #4. 

Table 4. 7: The secant stiffness value for each beam-column connection.  

Beam Group Section 
Secant Stiffness 

( K.in/rad ) 

Beam group #1 W24X68 2x106 

Beam group #2 W24X68 2x106 

Beam group #3 W27X84 2.5x106 

Beam group #4 W21X62 1.5x106 

The deformed shape and bending moment for linear analysis, is shown in Figure 

4.10, 4.11 respectively. A basic ANSYS input file as in Appendix-A. 
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Figure 4. 9: Ten-storey, one-bay deformed shape. 
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Figure 4. 10: Ten-storey, one-bay bending moment. 
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Table 4. 8: Tabulates the comparison of horizontal displacement at the upper left 

corner and max bending moment at the column base with semi-rigid frame. 

 

Semi-Rigid Frame Connection 

Linear analysis 

ANSYS 11 SAP 2000, V14 

Upper left corner 

displacement (in) 
1.8622 1.88 

Max Base 

moment (K.in) 
3170 3075 

* 1 Kips = 4.45 KN   &  1in = 25.4 mm  

4.7     Concluding remarks. 

It was an interesting result, which was obtained from SAP 2000 that compared 

with ANSYS model, that max sway at the upper left corner within 1.4%. The max 

bending moment at the column base vary from 1-3%. 

The results indicate that the analysis and design of semi-rigid steel structure by 

sap 2000 became easy to use for the engineers. 
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CHAPTER 5 : FORMULATION OF THE OPTIMIZATION 

PROBLEM 

5.1     Introduction. 

Formulation of an optimum design problem involves transcribing a verbal 

description of the problem into a well-defined mathematical statement. A set of 

variables to describe the design, called design variables, are given in the formulation. 

All designs have to satisfy a given set of constraints, which include limitations on 

material sizes, and response of the system. If a design satisfies all constraints, it is 

accepted as a feasible design. A criterion is needed to decide whether or not one design 

is better than another. This criterion is called the objective function. General flowchart 

diagram for optimum design could be sketched as shown in Figure 5.1 [52]. 

Determine:

1. Design Variables
2. Objective Function to be Minimize
3. Constrains that have to be satisfied

Describe the System

Generate initial design

Analyze the Design

Check the Constraints

Are Convergence Criteria Satisfied?

Change the design using an Optimization
method

Stop
Yes

No

 

Figure 5. 1: General flowchart diagrams for optimum design. 

5.2     Optimization problem and its formulation. 

Design objectives that can be used to measure design quality include minimum 

weight, and maximum stiffness, as well as many others. Typically, the design is limited 

by constraints such as the choice of material, feasible strength, displacements, load 

cases, support conditions, and technical constraints (e.g., type and size of available 

catalog sections, etc.).  
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        5.2.1     Objective function formula. 

The minimum weight could be considered as the objective function, the standard 

steel sections are treated as design variables and the constraints are taken from the 

design codes. Therefore, the discrete optimum design problem of steel frames can be 

stated as follows. 

∑∑
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=
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11

)( ρ
 

…….…………(5.1) 

Subjected to the strength constraints of AISC-LRFD [1] and displacement 

constraints. In Eqn. (1), mk is the total numbers of members in group k, ρi and Li are 

density and length of member i, Ak is cross-sectional area of member group k, and ng is 

total numbers of groups in the frame.  

        5.2.2     Unconstrained objective function formula. 

The unconstrained objective function φ(x) is then written as follow. 

[ ]εϕ KCxWx += 1)()(  ………….……(5.2) 

Where C= Constraint violation function, K = Penalty constant, ε = Penalty 

function exponent. In this study K= 1.0, ɛ =2.0 [45]. 

        5.2.3     Constraint violation function formula. 

The constraint violation function is as follow. 
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Where; t

iC  is constraint violations for top-storey displacement, d

iC  is constraint 

violations for interstorey displacement, sc

iC , sb

iC is constraint violations for size 

constraints, db

iC  is constraint violations for deflection and 
I

iC  the interaction formulas 

of the LRFD specification; Njt= number of joints in the top storey. Ns and Nc= number 

of storey’s except the top storey and number of beam columns, respectively. Ncl = the 

total number of columns in the frame except the ones at the bottom floor. Nf = number 

of storey. The penalty may be expressed as 

=iC
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        5.2.4     Displacement constraints. 

The displacement constraints are 
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Where dt : maximum displacement in the top storey, u

td : allowable top storey 

displacement (Max height /300), di : interstorey displacement in storey i, di = (ơn-ơn-1 / 

storey height), u

id : allowable interstorey displacement (storey height /300). 

        5.2.5     Deflection constraints. 

The deflection control for each beam is given as follows 

00.1 ≤−=
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d
λ     i=1,………Nf ……….………(5.7) 

Where ddb : maximum deflection for each beam. 

� ddu allowable floor girder deflection for service live load ≤ L/360. 

� ddu allowable floor girder deflection for service dead load and live load ≤ 

L/240. 

        5.2.6     Size constraints. 

The size constraint employed for constructional reasons is given as follows 
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Where dun and dbn are depths of steel sections selected for upper and lower floor 

columns.  

        5.2.7     Strength constraints. 

The strength constraints taken from AISC-LRFD [1] are expressed in the 

following equations. For members subject to bending moment and axial force. 
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Where Pu = requires axial strength (compression or tension), Pn = nominal axial 

strength (compression or tension), Mux = requires flexural strengths about the major 

axis, Muy = requires flexural strengths about the minor axis, Mnx = nominal flexural 

strength about the major axis, Mny = nominal flexural strength about the minor axis (for 

two-dimensional frames, Muy = 0), φ = φc = resistance factor for compression (equal 

0.85),   φ = φt = resistance factor for tension (equal 0.90), φb =flexural resistance factor 

(equal 0.90). 

If the shape is compact, check for lateral- torisional buckling (LTB) as follows 

1. Lb ≤ Lp , there is no LTB, and 

xypxn ZFMM ==  ………………(5.12) 

2. Lp< Lb ≤ Lr ,there is inelastic LTB, and 
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Where Lb = unbraced length, Lp = unbraced length at the plastic moment, Lr = 

unbraced length at the buckling moment, Mp= plastic moment, Fy= yield stress of steel, 

Zx = plastic section modulus, Cb = moment coefficient, Mr = buckling moment at Lr, Fr= 

compressive residual stress in flange: 10 ksi, Sx = elastic section modulus about major 

axis, ry = : governing radius of gyration about minor axis, E = modulus of elasticity of 

steel, G = shear modulus of elasticity of steel, A= cross sectional area, Cw = warping 

constant, Iy = moment of inertia about Y- axis. 
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        5.2.7.1     Design strength of columns. 

The AISC-LRFD [1] design strength of columns is computed as 

crgn FAP =  …….…………(5.19) 
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Where Ag = cross-sectional area of member, Fcr= critical compressive stress, λc= 

column slenderness parameter, Fy= yield stress of steel, K=effective-length factor, L= 

member length, r = governing radius of gyration, E= modulus of elasticity. The 

effective length factor K, for an unbraced frame is calculated from the following 

approximate equation taken from Dumonteil [53]. The out-of-plane effective length 

factor for each column member is specified to be Ky = 1.0, while that for each beam 

member is specified to be Ky = L/6 (i.e., floor stringers at L/6 points of the span). The 

length of the unbraced compression flange for each column member is calculated 

during the design process, while that for each beam member is specified to be L/6 of 

the span length. 
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Where subscripts A and B denote the two ends of the column under consideration. 

The restraint factor G is stated as 

∑
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Where Ic is the moment of inertia and Lc is the unsupported length of a column 

section; IB is the moment of inertia and LB is unsupported length of a beam. Σ indicates 

a summation for all members connected to that joint (A or B) and lying in the plane of 

buckling of the column under consideration. 

Therefore, the beam stiffness Ib/Lb given in (5.24) is multiplied by the factor of   

1 / (1 + 6E Ib/Lbk) to consider semi-rigid end connections, where k is rotational spring 

stiffness of corresponding end [54]. 
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        5.2.7.2     Design strength of beams. 

Design strength of beams is φbMn . As long as λ ≤ λp, the Mn is equal to Mp and 

the shape is compact. The plastic moment Mp is calculated from the equation 

xyp zFM =  …….…………(5.25) 

Where Z= the plastic section modulus, λp= slenderness parameter to attain Mp. 

Details of the formulations are given in the AISC-LRFD [1]. Gaylord et al. [55] and 

Galambos et al. [56] can also find broad information in the books. 

5.3     Development of harmony search optimization algorithm. 

        5.3.1     Harmony memory size. 

The harmony memory size (HMS) was selected depending on the geometric of 

the structure. HMS is also sensitive to the number of design variables. When the 

number of design variables is increased, the search space enlarges.  

        5.3.2     Harmony memory consideration rate. 

The harmony memory consideration rate (HMCR) is also sensitive. A value of 1.0 

for HMCR is not appropriate because of 0% possibility that the new design may be 

improved by values not stored in the HM.  

        5.3.3     Pitch adjusting rate. 

HS is also influenced by the value of pitch adjusting rate (PAR) which was taken 

as 0.45. Using higher values for PAR caused non-optimal designs, while lower values 

for it resulted in local optima. The neighboring index used in the pitch adjustment 

selected as ±2 depends on the geometry of the structure.  

        5.3.4     Maximum number of searches. 

The maximum number of searches is another important parameter in the HS 

algorithm.  

        5.3.5     Random number. 

A random number (rn) uniformly distributed over the interval [0,1] is generated. 

        5.3.6     Generation of harmony. 

The HM matrix is filled with randomly generated designs as the HMS. Each row 

of harmony memory matrix contains the values of design variables (w-section) which 

are randomly selected feasible solutions from the design pool. Hence, this matrix has n 

columns where n is the total number of design variables and HMS rows which is 

selected in the first step. HMS is similar to the total number of individuals in the 

population matrix of the genetic algorithm.  
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        5.3.7     Finite element analysis. 

ANSYS software used to analyze the structure with linear or non-linear analysis 

according to the optimization problem. 

        5.3.8     Unconstrained objective function. 

The unconstrained objective function calculates the weight of new design that 

including penalty if any constraint not satisfy. 

        5.3.9     Generation of a new harmony. 

If the new harmony is better than existing worst harmony in the HM, new 

harmony is included in the HM and the existing worst harmony is excluded from the 

HM. The process is repeated until the best harmony is obtained. Detailed flow charts 

for the optimum design algorithm using HS as shown in Figure 5.2.  

Start
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1. Harmony memory size (HMS).
2. Harmony memory consideration rate (HMCR).
3. Pitch adjusting rate (PAR).
4. Maximum number of search.
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Figure 5. 2: Harmony search algorithm optimization procedure. 
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Detailed flow charts for the initialization process using ANSYS-MATLAB as 

shown in Figure 5.3. 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 3: Detailed flow charts for the initialization process. 
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5.4     ANSYS – MATLAB batching file.  

� - b : Open ANSYS software. 

� - i : Input data to ANSYS and solve the model (Input.lgw). 

� - o : Output data (Output.lgw). 

5.5     Steel section catalog used in this study.  

Two catalogs are used in this study as the following: 

        5.5.1     Full Catalog Section  (FCS). 

This catalog contain all beam-column members with 168 W sections (W40 to 

W8) with weight less than 200 Ib/ft. as shown in Appendix-B. 

        5.5.2     Selected Catalog Section  (SCS). 

This catalog contains two section lists comprised 168 W sections each are used in 

the design. 

� The first one is column catalog with the height/width ratio less than 2 

(number of column equal 93 w section) with weight less than 200 Ib/ft. as 

shown in Appendix-B.  

� The second one is beam section list with the height/width ratio greater 

than 2 (number of beam equal 75 w section) with weight less than 200 

Ib/ft. as shown in Appendix-B. 
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CHAPTER 6 : ANALYSIS RESULTS AND DISCUSSION 

6.1     Introduction. 

The harmony search optimization algorithm adopted in this thesis is used to 

obtain a steel frame with minimum weight by selecting a set of standard steel sections 

which are light but yet strong enough to carry the imposed loads. The Constraints 

taking into account while developing the main optimization criteria are: Strength 

constraints of AISC-LRFD specification, displacement constraints and size constraints 

for beam-columns elements. [1].  

For the HS superiority to be proven, two steel frames with rigid and semi-rigid 

connections are presented in this study. The two frames are also investigated by 

Kameshki and Saka (2003) using Genetic Algorithm [27]. Moreover the effectiveness 

and robustness of harmony search algorithm, in comparison with genetic algorithm 

(GA) optimization were also studied. 

6.2     Optimization of three-storey, two-bay steel framed structure.  

A three-storey, two-bay steel frame structure optimization using HS search 

algorithm is presented in this chapter using various assumptions, in order to compare 

the results of the HS algorithm with results of an identical structure being optimized 

using the Genetic Algorithm Optimization Technique (GA). The structure has been 

analyzed assuming rigid beam-to-column connections and then another analysis has 

been carried out assuming semi-rigid connections using the Full Catalog Section (FCS) 

and Selected Catalog Section (SCS). The analysis has been run twice for each of the 

previously mentioned assumptions, once considering a linear behavior and then 

assuming a non-linear behavior. Finally, the results of all analysis have been compared 

to those in its GA counterpart. The structure being optimized is shown in Figure 6.1. 

The design constant parameters which used are listed: 

� Young’s modulus of the steel E =30,000 ksi. 

� Yield stress of Fy =36 ksi. 

� Allowable top storey sway (H/300) = 1.44 in. 

� Allowable interstorey sway (h/300) = 0.48 in. 

� Allowable deflection for service dead and live load (L/240) = 1 in. 

� The member effective length factors Kx is calculated from the 

approximate equation proposed by Dumonteil [53] as in equation (6.1). 
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�  The out-of-plane effective length factor for each column (Ky) = 1.0. 

� The out of plane unbraced length for each beam member was specified to 

be L/6 = 40 in. 

The optimization constant which used are listed: 

� Penalty constant of K = 1.0 [45]. 

� Penalty function exponent of ε = 2 [45]. 
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Figure 6. 1: Three-storey, two-bay frame. 

For the HS algorithm not to be stuck in local optimum solutions, and to 

encourage the HS algorithm to search the global spectrum of solutions, a set of very-

carefully-selected parameters have been established by various trials, and 

recommendations found in the literature review. 

The obtained values of the HS tuning parameter are as follows:  

1. Harmony memory size (HMS). 

            The harmony memory size (HMS) was selected depending on the 

geometric of the structure. HMS is also sensitive to the number of design 

variables. After several computational trials, Harmony memory size (HMS) 

found to be equal 15.  

2. Harmony memory consideration rate (HMCR). 

           The chosen value of HMCR as 0.9 reflects the confidence of the 

author, because the design variables (steel sections) are less than 200 Ib 

weight as mentioned in Appendix–B (Full Catalog Section  FCS and Selected 

Catalog Section  SCS). 
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3. Pitch adjusting rate (PAR). 

             As PAR is very sensitive parameter as it takes the optimization 

problem from local to global. Therefore, the PAR is taken 0.45 which agrees 

with [13]. 

4. Neighbouring index used in the pitch-adjustment. 

           By determining HMCR and PAR values and after many trials from ± 1 

to ±3, the solution is completely improved with 500 iterations. This needs lots 

of iteration that may reach 5000 iterations. However, the solution is obviously 

improved by ±2 value. Moreover, the number of iterations decreased steadily 

and this needs less time to find the optimal solution.  

5. Termination criterions. 

            After completely the first termination of 1000-th iterations, if the 

optimal solution doesn’t reach the ultimate path, the solution itself can be 

stopped automatically because it time wasting and the main reason is the 

random selection of the design variables (steel sections). On the one hand, the 

maximum number of iterations is selected to be 2500 because the solution 

after 1000-th iterations converges slightly to the optimum solution. 

6. Numbers of independent runs. 

            Ten independent runs are made to minimize the weight of the steel 

frames with rigid and semi-rigid connections.  

    6.2.1     Optimization by analyzing the connection as rigid frame. 

Ten independent optimum frame designs are achieved using Full Catalog Section  

(FCS) selection as in Appendix-B; analyzed using geometric non-linearity. The result is 

presented in Table 6.1.  

Depending on the results of the ten independent runs are presented in Table 6.1. It 

is observed that HS converged to the optimum designs between 1155-th and 2235-th 

iteration. HS develops the optimum design at 2235-th iterations and remains unchanged 

until the maximum number of iterations is obtained 2500-th. The average weight of ten 

different designs is 6820 lb, with a standard deviation of 203 lb. The maximum sway 

corresponding to the optimum design is 0.64 in which smaller than the allowable limit 

by AISC-LRFD-1.44 in. 
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Table 6. 1: Optimum design results in the three-storey, two-bay frame with rigid 

connections (FCS). 

Three-Storey, two-bay frame 

Rigid Connection (FCS) 

Frame Analysis Optimum Weight Max Improvisation 

1 6576 1392 

2 6864 2130 

3 6792 2235 

4 6888 2133 

5 6792 1586 

6 6528 2235 

7 6792 1803 

8 6768 1621 

9 6924 1600 

10 7272 1155 

Min ( Ib ) 6528  

Average ( Ib ) 6820  

Standard Deviation ( Ib ) 203  

Figure 6.2 present the optimum design history (weight verses number of 

iterations).  It proves that after 1000-th iterations the minimum weight slows down and 

become unchanged. 

 

 

Figure 6. 2: Optimum design history of three-storey, two-bay rigid frame (FCS). 

    6.2.2     Optimization by analyzing the connection as semi-rigid frame. 
The previous problem is also solved using semi-rigid connections. After 

studying all types of connections extensively, the choice has been made on the 

extended end plate without column stiffeners to be used as a connection since it’s the 

most common connection, and has a lower cost, and requires no extraordinary skills in 
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its application. To model such a connection, several mathematical models were studied. 

Frye–Morris polynomial model is used because it gives a powerful result that 

represents the moment–rotation curve as clarified in equation (6.2). The fixed value and 

geometric parameter was discussed chapter 4 section 4.2.3.  

5
3

3
2

1
1 )()()( KMcKMcKMcr ++=θ  ……...…………(6.2) 

In this study, the structure is analyzed using semi rigid connection with FCS 

and SCS. The results of both analysis (FCS & SCS) are compared in the following 

sections. 

           6.2.2.1     Optimization results using FCS. 

A three-storey, two-bay steel frame with the same geometric and loading is 

shown in Figure 6.1. The results of ten independent runs are obtained as in Table 6.2. 

Table 6. 2: Optimum design results of the three-storey, two-bay frame with semi-

rigid connection (FCS). 

Three-Storey, two-bay frame 

Semi-rigid Connection (FCS) 

Frame Analysis Optimum Weight Max Improvisation 

1 6516 1622 

2 6648 1204 

3 6504 1751 

4 7128 1622 

5 6372 1135 

6 6396 1490 

7 6396 1135 

8 6696 2091 

9 6348 1255 

10 6300 2366 

Min ( Ib ) 6300  

Average ( Ib ) 6530  

Standard Deviation ( Ib ) 246  

The minimum weight using semi-rigid connections 6300 Ib is less than the 

minimum weight using the rigid one 6528 Ib, even though both of them has the same 

catalog (FCS), moreover the rigid connection is more expensive than the semi-rigid 

one. In addition, the results showed that the maximum sway is 0.63 inch in case of rigid 

frame which is less than 0.93 inch in case of semi-rigid frame due to reduction of 

stiffness.  

The optimum design history is shown in Figure 6.3. It is observed from the 

Figure; the frame weight starts to decline in the first 1400-th iterations, but the weight 

become flat after 1400-th iterations. 
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Figure 6. 3: Optimum design history of three-storey, two-bay semi-rigid frame 

(FCS). 

           6.2.2.2     Optimization results using SCS. 

Selected Catalog Section  (SCS) is going to be used to work out ten various 

optimum frames as in Table 6.3. 

Table 6. 3: Optimum design results of three-storey, two-bay frame with semi-rigid 

connection (SCS). 

Three-Storey, two-bay frame 

Semi-rigid Connection (SCS) 

Frame Analysis Optimum Weight Max Improvisation 

1 6852 1452 

2 6492 2005 

3 6744 1490 

4 6504 1558 

5 6432 1546 

6 6300 1547 

7 6336 1513 

8 6504 1558 

9 6756 1674 

10 6432 1249 

Min ( Ib ) 6300  

Average ( Ib ) 6535  

Standard Deviation  ( Ib ) 186  

According to the results obtained from ten independent runs, semi-rigid 

connection in both FCS and SCS has the same optimum weight which is 6300 Ib but 

the iteration is completely different from each other. However, The Full Catalog 
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W
ei

gh
t 

Ib
 



www.manaraa.com

54 
 

Section analysis showed that the minimum weight is obtained at the 2366-th iterations, 

while the optimum weight in the Selected Catalog Section  analysis achieved at 1547-th 

iterations. This is because the SCS has flexibility in choosing beams and columns while 

in FCS, there is some difficulty in choosing section as beam and column sections which 

are not already identified.  

Figure 6.4 displays the optimum design history; the weight is unchanged from 

1547-th iterations to the maximum numbers 2500-th iterations. 

 
 

Figure 6. 4: Optimum design history of three-storey, two-bay semi-rigid frame 

(SCS). 

    6.2.3     Comparison between linear and non-linear analysis. 

The design algorithm presented is used to design three-storey, two-bay steel 

frames with semi-rigid connections taking into consideration the linear and nonlinear 

(P–∆) effect as in Figure 6.1. 

Selected Catalog Section   (SCS) are being used because the previous results prove that 

it can reach the appropriate solution more rapidly and gives the optimum weight. Table 

6.4 clarified the best optimum design achieved.  
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Table 6. 4: Optimum designs for a three-storey, two-bay steel frame with linear 

and non-linear analysis. 

The results prove that the optimum design with non-linear analyses is better than 

that of the linear analysis as in Figure 6.5; approximately 7.57% reduction in weight 

was obtained.  

On the other hand, if the overall gravity loading is not that large compared to 

lateral loading, geometric nonlinearity in the frame design yields lighter frames 

compared to linear frames. Even though, the solution with linear analysis requires one 

hour and a half, which the non-linear analysis needs more than one hour, almost three 

hours. 

Group 
Member 

type 

Harmony search optimization algorithm 

Extend end plate without column stiffeners 

Linear Analysis Non-linear Analysis 

Selected Catalog Section  (SCS) 

1 Column W14X53 W12X35 

2 Column W12X26 W12X26 

3 Column W8X21 W8X24 

4 Column W14X43 W14X43 

5 Column W14X43 W12X30 

6 Column W10X22 W10X22 

7 Beam W14X26 W16X26 

Total weight (Ib) 6816 6300 

Top storey sway (in) 

Allowable = 1.44 in 
0.85 0.92 

Saving weight 7.57 % 
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Figure 6. 5: Optimum design of three-storey, two-bay using linear and non-linear 

analysis). 

    6.2.4     Comparison of optimization results between HS and GA. 

The three-storey, two-bay steel frame was also investigated by Kameshki and 

Saka (2003) [27]. Table 6.5 compares the optimum design results produced by GAs 

with those obtained using HS algorithm. 

Table 6. 5: Comparison of optimization results between HS and GA. 

Group 
Member 

type 

Non-linear frame analysis 

GA (Saka , 2003) HS 

Rigid 

Extend end 

plate without 

column 

stiffeners 

Rigid 

Extend end plate without 

column stiffeners 

 

BS5950 BS5950 FCS FCS SCS 

1 Column W24X55 W18X36 W21X48 W18X40 W12X35 

2 Column W16X31 W14X26 W12X26 W12X26 W12X26 

3 Column W12X40 W8X18 W10X22 W8X21 W8X24 

4 Column W18X35 W24X68 W16X40 W16X40 W14X43 

5 Column W18X35 W24X68 W12X30 W12X30 W12X30 

6 Column W12X35 W18X35 W10X22 W8X21 W10X22 

7 Beam W16X26 W16X26 W16X26 W14X26 W16X26 

Total weight (Ib) 7404 7092 6528 6300 6300 

Top storey sway (in) 

Allowable = 1.44 in 
0.64 0.61 0.63 0.93 0.92 

  Linear analysis 

  Non-linear analysis   
W

ei
gh

t 
Ib
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Based on the results obtained from Table 6.5, the HS yielded 11.8 % lighter 

frames in comparison with GAs in case of rigid frame. Moreover, it is observed from 

Table 6.5 that HS yielded 11.2 % lighter frames compared with GAs in case of semi-

rigid frame. 

The sway values at the top storey are lower than their limitation value according 

to AISC-LRFD in case of GAs and HS. Moreover, the top storey sway is increased in 

case of semi-rigid frame due to reduction in stiffness. 

Figure 6.6 compares the design results that are produced by GAs with the results 

obtained by HS algorithm. The result indicates that the semi-rigid frame is lighter than 

that of the rigid frame connection. In addition, there is no different in optimum weight 

when using FCS and SCS, although the sections are completely different for both cases. 

       

 

 

 

Figure 6. 6: Comparison of optimum designs for three-storey, two-bay frame. 

6.3     Optimization of ten-storey, one-bay steel framed structure. 

A ten-storey, one-bay steel frame structure optimization using HS search 

algorithm is presented in this chapter using various assumptions, in order to compare 

the results of the HS algorithm with results of an identical structure being optimized 

using the Genetic Algorithm Optimization Technique (GA). The structure has been 

analyzed assuming rigid beam-to-column connections and then another analysis has 

been carried out assuming semi-rigid connections using the FCS and SCS. The analysis 

has been run twice for each of the previously mentioned assumptions, once considering 

a linear behavior and then assuming a non-linear behavior. Finally, the results of all 

G
A

-R
ig

id
 

F
u

ll
 c

at
al

og
 s

ec
ti

on
 

H
S

-R
ig

id
 

F
u

ll
 c

at
al

og
 s

ec
ti

on
 

G
A

-S
em

i-
ri

gi
d

 F
u

ll
 c

at
al

og
 s

ec
ti

on
 

H
S

-S
em

i-
ri

gi
d

 F
u

ll
 c

at
al

og
 s

ec
ti

on
 

H
S

-S
em

i-
ri

gi
d

 S
el

ec
te

d
 c

at
al

og
 

se
ct

io
n

 

W
ei

gh
t 

Ib
 



www.manaraa.com

58 
 

analysis have been compared to those in its GA counterpart. The structure being 

optimized is shown in Figure 6.7. 

The design constant parameters which are going to be used the same as in the 

previous model, except these parameters. 

� Allowable top storey sway (H/300) = 4.92 in. 

� Allowable interstorey sway (h/300) = 0.48 in. 

� Allowable deflection for service dead and live load (L/240) = 1.5 in. 

For the HS algorithm not to be stuck in local optimum solutions, and to 

encourage the HS algorithm to search the global spectrum of solutions, a set of very-

carefully-selected parameters have been established by various trials, and 

recommendations found in the literature review. 

The obtained values of the HS tuning parameter are as follows:  

� Harmony memory size (HMS) =20. 

� Harmony memory consideration rate (HMCR) = 0.9. 

� Pitch adjusting rate (PAR) = 0.45.  

� Neighbouring index used in the pitch-adjustment ± 2.  

Termination criterions obtained after different optimum designs trials. 

� First termination = 1000-th iterations. 

� Second termination = 5000-th iterations. 

Ten independent runs are made to minimize the weight of the steel frames with 

rigid and semi-rigid connections.  
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Figure 6. 7: Ten-storey, one-bay frame. 
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    6.3.1     Optimization by analyzing rigid frame structure. 

Ten independent optimum frame designs are achieved using Full Catalog Section  

(FCS) selection as in Appendix-B; The ten-storey, one-bay steel frame analyzed by 

linear analysis. The result is presented in Table 6.6.  

Table 6. 6: Optimum design results of ten-storey, one-bay frame with rigid 

connection (FCS). 

Ten-Storey, one-bay frame 

Rigid Connection ( FCS ) 

Frame Analysis Optimum Weight Max Improvisation 

1 48972 4919 

2 48984 4244 

3 51600 2071 

4 50106 3674 

5 48984 4244 

6 49230 4908 

7 49242 2468 

8 49086 3105 

9 52368 2982 

10 48828 4122 

Min ( Ib ) 48828  

Average ( Ib ) 49651  

Standard Deviation ( Ib ) 1056  

Table 6.6 represented the result of the optimization process. It is noticed that HS 

develops the optimum design weight at 4122-th iterations and it remains unchanged 

until the maximum number of iteration reaches 5000-th. The average weight and a 

standard deviation are 49,651 lb, 1056 lb respectively. The maximum sway obtained at 

the optimum design is 0.91 in which smaller than the allowable limit by AISC-LRFD 

4.92 in. 

The optimum design history is shown in Figure 6.8. The Figure shows that the 

optimization process is converged rapidly in the first 1000-th iterations, after that in 

minimum curve remains almost unchanged until 5000-th iterations obtained.  
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Figure 6. 8: Optimum design history of ten-storey, one-bay rigid frame (FCS). 

    6.3.2     Optimization by analyzing the connection semi-rigid frame. 

This case study is worked out using semi-rigid connections, using also Frye–

Morris polynomial model to present the connection behaviour. 

           6.3.2.1     Optimization results using FCS. 

A ten-storey, one-bay steel frame has the same geometric and loading is shown in 

Figure 6.7. The results of ten independent runs are achieved as in Table 6.7. 

Table 6. 7: Optimum design results of ten-storey, one-bay frame with semi-rigid 

connection (FCS). 

Ten-Storey, one-bay frame 

Semi-rigid Connection ( Full Catalog Section ) 

Frame Analysis Optimum Weight Max Improvisation 

1 50316 3323 

2 52428 4395 

3 50316 3323 

4 49068 4994 

5 49134 3627 

6 49248 2954 

7 48744 3492 

8 51792 2948 

9 49734 4690 

10 51810 4908 

Min ( Ib ) 48744  

Average ( Ib ) 50259  

Standard Deviation ( Ib) 1323  

Number of iterations 

W
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The optimum weight in case of the structure with analysis as semi-rigid 

connections is found to be 48,744 Ib. This value is less than the optimum weight using 

the rigid one 48,828 Ib, even though both of them has the same catalog (FCS). The 

results observed that the standard deviation is 1056 Ib in case of rigid frame, which is 

less than 1323 Ib in case of semi-rigid frame, which can refers due to lack of stiffness.  

Figure 6.9 displays the optimum design history. It is observed from the Figure; 

the frame weight at 1000-th iterations which equals 49,392 Ib and becomes 48,744 Ib 

after 5000-th iterations this means that the weight decreases only about 1.31 % for 

4000-th iterations. 

 

 

Figure 6. 9: Optimum design history of ten-storey, one-bay semi-rigid frame 

(FCS). 

           6.3.2.2     Optimization results using SCS.  

Table 6.8 represented the results of ten independent runs. It is observed that HS 

develops the optimum design weight 47,832 Ib at 4122-th iterations and it remains 

unchanged until the maximum number of iteration reaches 5000-th. Moreover, the 

standard deviation increases about 38 % in comparable with optimum design using 

FCS.  
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Table 6. 8: Optimum design results of ten-storey, one-bay frame with semi-rigid 

connection (SCS).  

Ten-Storey, one-bay frame 

Semi-rigid Connection ( SCS ) 

Frame Analysis Optimum Weight Max Improvisation 

1 51996 2670 

2 51996 2670 

3 50484 2933 

4 54000 3074 

5 54042 4155 

6 47832 4050 

7 52206 4190 

8 49956 3186 

9 50082 4250 

10 48216 3916 

Min ( Ib ) 47832  

Average ( Ib ) 51081  

Standard Deviation ( Ib ) 2150  

The optimum design history is shown in Figure 6.10. The optimum weight at 

1000-th iterations equal 48,516 Ib and become 47,832 Ib after 5000-th iterations this 

means that the weight decrease only about 1.40 % for the last 4000-th iterations. 

 
 
 

Figure 6. 10: Optimum design history of ten-storey, one-bay semi-rigid frame 

(SCS). 

    6.3.3     Comparison between linear and non-linear analysis. 

The design algorithm presented is used to design ten-storey, one-bay steel frames 

with semi-rigid connections taking into consideration the linear and nonlinear (P–∆) 

effect as in Figure 6.7. 

W
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Number of iterations 
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Selected Catalog Section   (SCS) are being used because the previous results prove that 

it can reach the appropriate solution more rapidly and gives the optimum weight. Table 

6.9 tabulates the optimum design sections achieved.  

Table 6. 9: Comparison between linear and non-linear analysis. 

The results prove that the solution with linear analyses is better than that of the 

non-linear analysis as in Figure 6.11, approximately 5.3% in weight. Moreover, the 

result indicates that when the overall gravity loading is much larger compared to lateral 

loading and is dominant in the design of the frame, linear semi-rigid frames are lighter 

than non-linear semi-rigid frames. So not surprisingly that the solution with linear 

analysis requires three hour, which the non-linear analysis needs more than three hour, 

almost nine hours; the properties of the used computer are: 

� Computer type:  Dell Inspiron. 

� Processor: Pentium (R) dual-core CPU. 

� Installed memory: 4.00 GB. 

� System type: 64 bit operating system. 

On the other hand, the linear analyses require two hours with processor core I3. 

So the results depend on computer type and specification. 

Group 
Member 

type 

Harmony search optimization algorithm 

Extend end plate without column stiffeners 

Linear Analysis Non-linear Analysis 

Selected Catalog Section  (SCS) 

1 Column W27X146 W27X146 

2 Column W21X122 W24X131 

3 Column W21X101 W21X101 

4 Column W18X76 W16X89 

5 Column W14X82 W14X82 

6 Beam W24X68 W24X68 

7 Beam W24X68 W24X76 

8 Beam W27X84 W24X94 

9 Beam W21X62 W21X62 

Total weight (Ib) 47,832 50508 

Top storey sway (in) 

Allowable = 4.92 in 
1.43 1.55 

Saving weight                        5.3 % 
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Figure 6. 11: Optimum design of ten-storey, one-bay using linear and non-linear 

analysis. 

    6.3.4     Comparison of optimum results between HS and GA. 

The ten-storey, one-bay steel frame was also investigated by Kameshki and Saka 

(2003) [27]. Table 6.10 compares the optimum design results produced by GAs with 

those obtained using HS algorithm. 

Based on the results obtained from Table 6.10, the HS yielded 5.18 % lighter 

frames in comparison with GAs in case of rigid frame. In addition, it is observed from 

Table that HS yielded 7.76 % lighter frames compared with GAs in case of semi-rigid 

frame. 

The sway values at the top storey are lower than their limitation value according 

to AISC-LRFD in case of GAs and HS. Moreover, the top storey sway is increased in 

case of semi-rigid frame due to reduction in stiffness. 
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Table 6. 10: Comparison of optimum results between HS and GA. 

Figure 6.6 compares the design results that are produced by GAs with the results 

obtained by HS algorithm. The result indicates that the semi-rigid frame connections is 

lighter than that of the rigid frame connection. In addition, Selected Catalog Section   

(SCS) are lighter than Full Catalog Section  (FCS) about 1.87 per cent.  

 

 

 

 

Group 
Member 

type 

Linear frame analysis 

GA (Saka , 2003)  HS 

Rigid 

Extend end 

plate without 

column 

stiffeners 

 Rigid 

Extend end plate without 

column stiffeners 

 

BS5950 BS5950 
 

 
FCS FCS SCS 

1 Column W36X135 W36X160  W36X150 W24X162 W27X146 

2 Column W33X141 W36X135  W30X132 W24X131 W21X122 

3 Column W30X108 W36X135  W27X114 W21X101 W21X101 

4 Column W27X102 W33X118  W24X84 W14X82 W18X76 

5 Column W14X90 W30X108  W18X76 W14X68 W14X82 

6 Beam W24X68 W24X68  W24X76 W24X68 W24X68 

7 Beam W24X68 W24X68  W24X76 W24X68 W24X68 

8 Beam W27X84 W24X68  W24X68 W27X84 W27X84 

9 Beam W30X108 W18X35  W21X48 W21X62 W21X62 

Total weight (Ib) 51,498 51,858  48,828 48,744 47,832 

Top storey sway (in) 

Allowable = 4.92 in 
0.93 1.21  0.91 1.45 1.43 
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Figure 6. 12: Comparison of optimum designs for ten-storey, one-bay frame. 
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CHAPTER 7 : CONCLUSION AND FUTURE RESEARCH 

7.1     Introduction. 

The aim of this research is to develop a computer design model which obtains the 

optimum frame weight by selecting a standard set of steel sections and satisfy strength 

constraints of AISC-LRFD specification, displacement constraints, deflection and also 

size constraint for beam-columns were imposed on frames. 

The recently developed HS meta-heuristic optimization algorithm was 

conceptualized using the musical process of searching for a perfect state of harmony. 

Compared to gradient-based mathematical optimization algorithms, the HS algorithm 

imposes fewer mathematical requirements and does not require initial value settings of 

the decision variables. As the HS algorithm uses stochastic random searches, derivative 

information is also unnecessary. Furthermore, the HS algorithm generates a new vector, 

after considering all of the existing vectors based on the harmony memory considering 

rate (HMCR) and the pitch adjusting rate (PAR), whereas the GA only consider the two 

parent vectors. These features increase the flexibility of the HS algorithm and produce 

better solutions. 

7.2     Conclusion. 

Optimum design of semi-rigid steel frame structures using harmony search 

algorithm has been achieved in this study. The conclusions can be summarized as 

follows: 

1. HS algorithm developed 5.18 –11.8 % lighter frames in the case of rigid 

connections compared to ones produced by GAs. 

2. HS algorithm developed 7.76 –11.2 % lighter frames in the case of semi-

rigid connections compared to ones produced by GAs. 

3. Optimization using Selected Catalog Section   (SCS) result in lighter 

frame sections than using Full Catalog Section  (FCS) about 1.87%. 

4. HS converges to optimum designs before the maximum number of frame 

analyses is executed in almost all designs. 

5. The optimum design weight decreases gradually after 1000-th iterations 

only about 1.3-1.4% to reach the maximum number of iterations. 

6. The designs with semi-rigid connection resulted in lighter frames than the 

ones with rigid connections. In addition, the total costs of the flexible 

connected frames are less than the rigidly connected frames. 

7. The result using harmony search algorithm prove that is powerful and 

effective tools, because HS generates a new design considering all 
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existing designs, while GA generates a new design from a couple of 

chosen parents by exchanging the artificial genes. On the other hand, HS 

takes into account each design variable independently but GA considers 

design variables depending upon building block theory. 

7.3     Future research. 

There are many ways to develop new algorithms, and from the metaheuristic 

point of view, the most heuristic way is probably to develop new algorithms by 

hybridization. That is to say, new algorithms are often based on the right combination 

of the existing metaheuristic algorithms. For example, combining a trajectory type 

simulated annealing with multiple agents; the parallel simulated annealing optimization 

(PSO) can be developed. In the context of HS algorithms, the combination of HS with 

PSO. As in the case of any efficient metaheuristic algorithms, the most difficult thing is 

probably to find the right or optimal balance between diversity and intensity of the 

found solutions; here the most challenging task in developing new hybrid algorithms is 

probably to find the right combination of which feature/components of existing 

algorithms. 

A future extension adaptive harmony search algorithm can be employed with 

confidence in the optimum design of real size steel skeletal structures. In this technique, 

the harmony search parameters are dynamically adjusted by the algorithm itself taking 

into account varying features of the design problem under consideration. The algorithm 

itself automatically changes the values of harmony considering rate (HMCR) and pitch 

adjustment rate (PAR) depending on the experience obtained through the design 

process. Hence, varying features of a design space are automatically accounted by the 

algorithm for establishing a tradeoff between explorative and exploitative search for the 

most successful optimization process. Finally, the adaptive harmony search algorithm 

eliminates the necessity of carrying out a sensitivity analysis with different values of 

harmony search parameters whenever a new design problem is to be undertaken. This 

makes the algorithm more general and applicable to the optimum design of large size 

real-world steel structures. 
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APPENDIX-A 

1-     Input file for nonlinear analysis of semi-rigid frame (three-storey, two-bay) 

/PREP7 

/NOPR    

/PMETH,OFF,0 

KEYW,PR_SET,1    

KEYW,PR_STRUC,1  

KEYW,PR_THERM,0  

KEYW,PR_FLUID,0  

KEYW,PR_ELMAG,0  

KEYW,MAGNOD,0    

KEYW,MAGEDG,0    

KEYW,MAGHFE,0    

KEYW,MAGELC,0    

KEYW,PR_MULTI,0  

KEYW,PR_CFD,0    

/GO  

/PREP7 

!*** ELEMENT TYPES *** 

!*  

ET,1,BEAM3  

ET,2,COMBIN39 

!*    

KEYOPT,1,6,1 

KEYOPT,1,9,0 

KEYOPT,1,10,0 

!*     

KEYOPT,2,1,0 

KEYOPT,2,2,0 

KEYOPT,2,3,6 

KEYOPT,2,4,0 

KEYOPT,2,6,0 

!*   

!*** REAL CONSTANTS *** 

!*** COLUMN ***   

R,1,10.3,285,12.5,0,0,0                                   

R,2,7.65,204,12.2,0,0,0                                             

R,3,7.08,82.7,7.93,0,0,0                                             

R,4,12.6,428,13.7,0,0,0                                           

R,5,8.79,238,12.3,0,0,0                                                

R,6,6.49,118,10.2,0,0,0                                           

R,7,7.68,301,15.7,0,0,0 

!*                               

!*** NONLINEAR SPRING ***   

R,8,0,0,0.0005,378,0.005,2900                          

RMORE,0.01,4200,0.015,4960,0.02,5500           
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!*** MATERIAL BEHAVIOR ***  

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,30000   

MPDATA,PRXY,1,,0.30  

!* 

!*** KEYPOINT ***   

!* 

K,1,0,0,0,   

K,2,240,0,0, 

K,3,480,0,0, 

K,4,0,144,0, 

K,5,240,144,0,   

K,6,480,144,0,   

K,7,0,288,0, 

K,8,240,288,0,   

K,9,480,288,0,   

K,10,0,432,0,    

K,11,240,432,0,  

K,12,480,432,0, 

!* 

!*** SPRING KEYPOINT ***   

K,13,0,144,0, 

K,14,240,144,0,  

K,15,240,144,0,  

K,16,480,144,0,   

K,17,0,288,0, 

K,18,240,288,0,   

K,19,240,288,0,   

K,20,480,288,0,   

K,21,0,432,0,   

K,22,240,432,0,  

K,23,240,432,0,  

K,24,480,432,0, 

!* 

!*** ELEMENT LINE ***   

LSTR,       1,       4   

LSTR,       3,       6   

LSTR,       4,       7   

LSTR,       6,       9   

LSTR,       7,      10   

LSTR,       9,      12   

LSTR,       2,       5   

LSTR,       5,       8   

LSTR,       8,      11 

!* 

LSTR,       13,      14   

LSTR,       15,      16   

LSTR,       17,      18   
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LSTR,       19,      20   

LSTR,       21,      22   

LSTR,       23,      24 

!* 

!*** MESHING LINE ***   

FLST,5,2,4,ORDE,2    

FITEM,5,1    

FITEM,5,-2   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,1,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

FLST,5,2,4,ORDE,2    

FITEM,5,3    

FITEM,5,-4   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,2,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

FLST,5,2,4,ORDE,2    

FITEM,5,5    

FITEM,5,-6   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,3,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

CM,_Y,LINE   

LSEL, , , ,       7  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,4,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    
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CMDELE,_Y1   

CM,_Y,LINE   

LSEL, , , ,       8  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,5,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

CM,_Y,LINE   

LSEL, , , ,       9  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,6,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

FLST,5,6,4,ORDE,2    

FITEM,5,10   

FITEM,5,-15  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

CMSEL,S,_Y1  

LATT,1,7,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

LESIZE,ALL, , ,10, ,1, , ,1, 

FLST,2,15,4,ORDE,2   

FITEM,2,1    

FITEM,2,-15  

LMESH,P51X   

!* 

!*Spring define*! 

TYPE,   2    

MAT,       1 

REAL,       8    

ESYS,       0    

SECNUM,  

TSHAP,LINE   

FLST,2,2,1   

FITEM,2,2    

FITEM,2,94   

E,P51X   

FLST,2,2,1   
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FITEM,2,64   

FITEM,2,95   

E,P51X   

FLST,2,2,1   

FITEM,2,64   

FITEM,2,105  

E,P51X   

FLST,2,2,1   

FITEM,2,13   

FITEM,2,106  

E,P51X   

FLST,2,2,1   

FITEM,2,23   

FITEM,2,116  

E,P51X   

FLST,2,2,1   

FITEM,2,74   

FITEM,2,117  

E,P51X   

FLST,2,2,1   

FITEM,2,74   

FITEM,2,127  

E,P51X   

FLST,2,2,1   

FITEM,2,33   

FITEM,2,128  

E,P51X   

FLST,2,2,1   

FITEM,2,43   

FITEM,2,138  

E,P51X   

FLST,2,2,1   

FITEM,2,84   

FITEM,2,139  

E,P51X   

FLST,2,2,1   

FITEM,2,84   

FITEM,2,149  

E,P51X   

FLST,2,2,1   

FITEM,2,53   

FITEM,2,150  

E,P51X   

!* 

CPINTF,UX,0.0001,    

CPINTF,UY,0.0001,    

FINISH   

/SOL 

!* 
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ANTYPE,0 

NLGEOM,1 

NSUBST,20,100,1 

LNSRCH,1 

AUTOTS,ON 

NROPT,FULL,,On 

NEQIT,25 

OUTRES,ALL,LAST 

!* 

FLST,2,3,3,ORDE,2    

FITEM,2,1    

FITEM,2,-3   

/GO  

DK,P51X, , , ,0,ALL, , , , , ,   

FLST,2,2,3,ORDE,2    

FITEM,2,4    

FITEM,2,7    

/GO  

FK,P51X,FX,8 

FLST,2,1,3,ORDE,1    

FITEM,2,10   

/GO  

FK,P51X,FX,4 

FLST,2,40,2,ORDE,2   

FITEM,2,91   

FITEM,2,-130 

SFBEAM,P51X,1,PRES,0.22,0.22, , , , ,    

FLST,2,20,2,ORDE,2   

FITEM,2,131  

FITEM,2,-150 

SFBEAM,P51X,1,PRES,0.17,0.17, , , , ,   

!* 

SAVE 

SOLVE 

/POST1 

!*** ELEMENT PROPERTIS ***   

!*  

AVPRIN,0, ,  

ETABLE,UX,U,X    

VPRIN,0, ,  

ETABLE,UY,U,Y    

AVPRIN,0, ,  

ETABLE,PU,SMISC, 1   

AVPRIN,0, ,  

ETABLE,MI,SMISC, 6   

AVPRIN,0, ,  

ETABLE,MJ,SMISC, 12  

PRETAB,UX,UY,PU,MI,MJ 
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2-     Input file for linear Analysis of semi-rigid frame (ten-storey, one-bay). 

/PREP7 

/NOPR    

/PMETH,OFF,0 

KEYW,PR_SET,1    

KEYW,PR_STRUC,1  

KEYW,PR_THERM,0  

KEYW,PR_FLUID,0  

KEYW,PR_ELMAG,0  

KEYW,MAGNOD,0    

KEYW,MAGEDG,0    

KEYW,MAGHFE,0    

KEYW,MAGELC,0    

KEYW,PR_MULTI,0  

KEYW,PR_CFD,0    

/GO  

!*** ELEMENT TYPES *** 

ET,1,BEAM3   

ET,2,COMBIN39 

!*    

KEYOPT,1,6,1 

KEYOPT,1,9,0 

KEYOPT,1,10,0 

!*     

KEYOPT,2,1,0 

KEYOPT,2,2,0 

KEYOPT,2,3,6 

KEYOPT,2,4,0 

KEYOPT,2,6,0 

!*    

!*** REAL CONSTANTS *** 

!*** COLUMN ***   

R,1,43.1,5660,27.4,0,0,0                             

R,2,35.9,2960,21.7,0,0,0                                    

R,3,29.8,2420,21.4,0,0,0                                     

R,4,22.3,1330,18.2,0,0,0                                  

R,5,24,881,14.3,0,0,0                                           

R,6,20.1,1830,23.7,0,0,0                                               

R,7,20.1,1830,23.7,0,0,0                                        

R,8,24.8,2850,26.7,0,0,0                                          

R,9,18.3,1330,21,0,0,0                                               

!* 

!*** NONLINEAR SPRING ***   

R,10,0,0,0.0005,1112,0.005,8510                                          

RMORE,0.01,12350,0.015,14605,0.02,16210                                        

R,11,0,0,0.0005,1112,0.005,8510                                          

RMORE,0.01,12350,0.015,14605,0.02,16210 

R,12,0,0,0.0005,1420,0.005,10730                                       
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RMORE,0.01,15600,0.015,18400,0.02,20418                                     

R,13,0,0,0.0005,885,0.005,6780                                       

RMORE,0.01,9825,0.015,11618,0.02,12900                                    

!* 

!*** MATERIAL BEHAVIOR ***  

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,30000   

MPDATA,PRXY,1,,0.30 

!* 

!*** KEYPOINT ***   

K,1,0,0,0,   

K,3,0,144,0, 

K,5,0,288,0, 

K,7,0,432,0, 

K,9,0,576,0, 

K,11,0,720,0,    

K,13,0,864,0,    

K,15,0,1008,0,   

K,17,0,1152,0,   

K,19,0,1296,0,   

K,21,0,1440,0, 

!*   

K,2,360,0,0, 

K,4,360,144,0,   

K,6,360,288,0,   

K,8,360,432,0,   

K,10,360,576,0,  

K,12,360,720,0,  

K,14,360,864,0,  

K,16,360,1008,0, 

K,18,360,1152,0, 

K,20,360,1296,0, 

K,22,360,1440,0, 

!* 

!*** SPRING KEYPOINT ***   

K,23,0,144,0, 

K,25,0,288,0, 

K,27,0,432,0, 

K,29,0,576,0, 

K,31,0,720,0,    

K,33,0,864,0,    

K,35,0,1008,0,   

K,37,0,1152,0,   

K,39,0,1296,0,   

K,41,0,1440,0,   

!* 

K,24,360,144,0,   

K,26,360,288,0,   



www.manaraa.com

82 
 

K,28,360,432,0,   

K,30,360,576,0,  

K,32,360,720,0,  

K,34,360,864,0,  

K,36,360,1008,0, 

K,38,360,1152,0, 

K,40,360,1296,0, 

K,42,360,1440,0, 

!* 

!*** ELEMENT LINE ***   

LSTR,       1,       3   

LSTR,       2,       4   

LSTR,       3,       5   

LSTR,       4,       6   

LSTR,       5,       7   

LSTR,       6,       8   

LSTR,       7,       9   

LSTR,       8,      10   

LSTR,       9,      11   

LSTR,      10,      12   

LSTR,      11,      13   

LSTR,      12,      14   

LSTR,      13,      15   

LSTR,      14,      16   

LSTR,      15,      17   

LSTR,      16,      18   

LSTR,      17,      19   

LSTR,      18,      20   

LSTR,      19,      21   

LSTR,      20,      22   

LSTR,      23,      24   

LSTR,      25,      26   

LSTR,      27,      28   

LSTR,      29,      30   

LSTR,      31,      32   

LSTR,      33,      34   

LSTR,      35,      36   

LSTR,      37,      38   

LSTR,      39,      40   

LSTR,      41,      42  

!* 

!*** MESHING LINE ***   

FLST,5,4,4,ORDE,2    

FITEM,5,1    

FITEM,5,-4   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   
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CMSEL,S,_Y1  

LATT,1,1,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,2    

FITEM,5,5    

FITEM,5,-8   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,2,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,2    

FITEM,5,9    

FITEM,5,-12  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,3,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,2    

FITEM,5,13   

FITEM,5,-16  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,4,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,4,4,ORDE,2    
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FITEM,5,17   

FITEM,5,-20  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,5,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,3,4,ORDE,2    

FITEM,5,21   

FITEM,5,-23  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,6,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,3,4,ORDE,2    

FITEM,5,24   

FITEM,5,-26  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,7,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

FLST,5,3,4,ORDE,2    

FITEM,5,27   

FITEM,5,-29  

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   
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CMSEL,S,_Y1  

LATT,1,8,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

CM,_Y,LINE   

LSEL, , , ,      30  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

CMSEL,S,_Y1  

LATT,1,9,1, , , ,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

LESIZE,ALL, , ,10, ,1, , ,1, 

FLST,2,30,4,ORDE,2   

FITEM,2,1    

FITEM,2,-30  

LMESH,P51X   

!*   

TYPE,   2    

MAT,       1 

REAL,      10    

ESYS,       0    

SECNUM,  

TSHAP,LINE   

!*   

FLST,2,2,1   

FITEM,2,2    

FITEM,2,203  

E,P51X   

FLST,2,2,1   

FITEM,2,13   

FITEM,2,204  

E,P51X   

FLST,2,2,1   

FITEM,2,23   

FITEM,2,214  

E,P51X   

FLST,2,2,1   

FITEM,2,33   

FITEM,2,215  

E,P51X   

FLST,2,2,1   

FITEM,2,43   

FITEM,2,225  
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E,P51X   

FLST,2,2,1   

FITEM,2,53   

FITEM,2,226  

E,P51X   

!*   

TYPE,   2    

MAT,       1 

REAL,      11    

ESYS,       0    

SECNUM,  

TSHAP,LINE   

!*   

FLST,2,2,1   

FITEM,2,63   

FITEM,2,236  

E,P51X   

FLST,2,2,1   

FITEM,2,73   

FITEM,2,237  

E,P51X   

FLST,2,2,1   

FITEM,2,83   

FITEM,2,247  

E,P51X   

FLST,2,2,1   

FITEM,2,93   

FITEM,2,248  

E,P51X   

FLST,2,2,1   

FITEM,2,103  

FITEM,2,258  

E,P51X   

FLST,2,2,1   

FITEM,2,113  

FITEM,2,259  

E,P51X  

!*    

TYPE,   2    

MAT,       1 

REAL,      12    

ESYS,       0    

SECNUM,  

TSHAP,LINE   

!*   

FLST,2,2,1   

FITEM,2,123  

FITEM,2,269  

E,P51X   
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FLST,2,2,1   

FITEM,2,133  

FITEM,2,270  

E,P51X   

FLST,2,2,1   

FITEM,2,143  

FITEM,2,280  

E,P51X   

FLST,2,2,1   

FITEM,2,153  

FITEM,2,281  

E,P51X   

FLST,2,2,1   

FITEM,2,163  

FITEM,2,291  

E,P51X   

FLST,2,2,1   

FITEM,2,173  

FITEM,2,292  

E,P51X   

!*   

TYPE,   2    

MAT,       1 

REAL,      13    

ESYS,       0    

SECNUM,  

TSHAP,LINE   

!*   

FLST,2,2,1   

FITEM,2,183  

FITEM,2,302  

E,P51X   

FLST,2,2,1   

FITEM,2,193  

FITEM,2,303  

E,P51X   

!* 

CPINTF,UX,0.0001,    

CPINTF,UY,0.0001, 

!* 

ANTYPE,0 

!*  

FLST,2,2,3,ORDE,2    

FITEM,2,1    

FITEM,2,-2   

DK,P51X, , , ,0,ALL, , , , , ,   

!*   

FLST,2,1,3,ORDE,1    

FITEM,2,3    
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FLST,2,9,3,ORDE,9    

FITEM,2,3    

FITEM,2,5    

FITEM,2,7    

FITEM,2,9    

FITEM,2,11   

FITEM,2,13   

FITEM,2,15   

FITEM,2,17   

FITEM,2,19   

!*   

FK,P51X,FX,2.5    

FLST,2,1,3,ORDE,1    

FITEM,2,21   

!*   

FK,P51X,FX,1.25 

FLST,2,90,2,ORDE,2   

FITEM,2,201  

FITEM,2,-290 

SFBEAM,P51X,1,PRES,0.50,0.50, , , , ,    

FLST,2,10,2,ORDE,2   

FITEM,2,291  

FITEM,2,-300 

SFBEAM,P51X,1,PRES,0.25,0.25, , , , ,    

!* 

SAVE 

/SOL 

SOLVE 

!* 

/POST1 

!*** ELEMENT PROPERTIS ***   

!*  

AVPRIN,0, ,  

ETABLE,UX,U,X    

AVPRIN,0, ,  

ETABLE,UY,U,Y    

AVPRIN,0, ,  

ETABLE,PU,SMISC, 1   

AVPRIN,0, ,  

ETABLE,MI,SMISC, 6   

AVPRIN,0, ,  

ETABLE,MJ,SMISC, 12  

PRETAB,UX,UY,PU,MI,MJ 

!* 
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APPENDIX-B 

1- Full Catalog Section (FCS): 

No. 
AISC Sections  

< 200 Ib 

Weigth 
(W)  
Ib/ft 

Area 
(A) 
 in

2 
 

Depth 
(D)  
in 

 
Width 
(BF) 
 in 

tw 
in 

tf 
in 

bf / 2tf h / tw 
Ix 
in

4
 

Zx 
in

3
 

Sx 
in

3
 

rx 
in

3
 

Iy 
in

4
 

Zy 
in

3
 

Sy 
in

3
 

ry 
in

3
 

J CW 

1 W40X199 199 58.5 38.7 15.8 0.65 1.07 7.39 52.6 14900 869 770 16 695 137 88.2 3.45 18.3 246000 

2 W40X183 183 53.3 39 11.8 0.65 1.2 4.92 52.6 13200 774 675 15.7 331 88.3 56 2.49 19.3 118000 

3 W40X167 167 49.2 38.6 11.8 0.65 1.03 5.76 52.6 11600 693 600 15.3 283 76 47.9 2.4 14 99700 

4 W40X149 149 43.8 38.2 11.8 0.63 0.83 7.11 54.3 9800 598 513 15 229 62.2 38.8 2.29 9.36 80000 

5 W36X194 194 57 36.5 12.1 0.765 1.26 4.81 42.4 12100 767 664 14.6 375 97.7 61.9 2.56 22.2 116000 

6 W36X182 182 53.6 36.3 12.1 0.725 1.18 5.12 44.8 11300 718 623 14.5 347 90.7 57.6 2.55 18.5 107000 

7 W36X170 170 50.1 36.2 12 0.68 1.1 5.47 47.7 10500 668 581 14.5 320 83.8 53.2 2.53 15.1 98500 

8 W36X160 160 47 36 12 0.65 1.02 5.88 49.9 9760 624 542 14.4 295 77.3 49.1 2.5 12.4 90200 

9 W36X150 150 44.2 35.9 12 0.625 0.94 6.37 51.9 9040 581 504 14.3 270 70.9 45.1 2.47 10.1 82200 

10 W36X135 135 39.7 35.6 12 0.6 0.79 7.56 54.1 7800 509 439 14 225 59.7 37.7 2.38 7 68100 

11 W33X169 169 49.5 33.8 11.5 0.67 1.22 4.71 44.7 9290 629 549 13.7 310 84.4 53.9 2.5 17.7 82400 

12 W33X152 152 44.8 33.5 11.6 0.635 1.06 5.48 47.2 8160 559 487 13.5 273 73.9 47.2 2.47 12.4 71700 

13 W33X141 141 41.6 33.3 11.5 0.605 0.96 6.01 49.6 7450 514 448 13.4 246 66.9 42.7 2.43 9.7 64400 

14 W33X130 130 38.3 33.1 11.5 0.58 0.855 6.73 51.7 6710 467 406 13.2 218 59.5 37.9 2.39 7.37 56600 

15 W33X118 118 34.7 32.9 11.5 0.55 0.74 7.76 54.5 5900 415 359 13 187 51.3 32.6 2.32 5.3 48300 

16 W30X191 191 56.3 30.7 15 0.71 1.19 6.35 37.7 9200 675 600 12.8 673 138 89.5 3.46 21 146000 

17 W30X173 173 51 30.4 15 0.655 1.07 7.04 40.8 8230 607 541 12.7 598 123 79.8 3.42 15.6 129000 

18 W30X148 148 43.5 30.7 10.5 0.65 1.18 4.44 41.6 6680 500 436 12.4 227 68 43.3 2.28 14.5 49400 

19 W30X132 132 38.9 30.3 10.5 0.615 1 5.27 43.9 5770 437 380 12.2 196 58.4 37.2 2.25 9.72 42100 

20 W30X124 124 36.5 30.2 10.5 0.585 0.93 5.65 46.2 5360 408 355 12.1 181 54 34.4 2.23 7.99 38600 

21 W30X116 116 34.2 30 10.5 0.565 0.85 6.17 47.8 4930 378 329 12 164 49.2 31.3 2.19 6.43 34900 

22 W30X108 108 31.7 29.8 10.5 0.545 0.76 6.89 49.6 4470 346 299 11.9 146 43.9 27.9 2.15 4.99 30900 

23 W30X99 99 29.1 29.7 10.5 0.52 0.67 7.8 51.9 3990 312 269 11.7 128 38.6 24.5 2.1 3.77 26800 

24 W30X90 90 26.4 29.5 10.4 0.47 0.61 8.52 57.5 3610 283 245 11.7 115 34.7 22.1 2.09 2.84 24000 

25 W27X194 194 57.2 28.1 14 0.75 1.34 5.24 31.8 7860 631 559 11.7 619 136 88.1 3.29 27.1 111000 

26 W27X178 178 52.5 27.8 14.1 0.725 1.19 5.92 32.9 7020 570 505 11.6 555 122 78.8 3.25 20.1 98400 
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27 W27X161 161 47.6 27.6 14 0.66 1.08 6.49 36.1 6310 515 458 11.5 497 109 70.9 3.23 15.1 87300 

28 W27X146 146 43.1 27.4 14 0.605 0.975 7.16 39.4 5660 464 414 11.5 443 97.7 63.5 3.2 11.3 77200 

29 W27X129 129 37.8 27.6 10 0.61 1.1 4.55 39.7 4760 395 345 11.2 184 57.6 36.8 2.21 11.1 32500 

30 W27X114 114 33.5 27.3 10.1 0.57 0.93 5.41 42.5 4080 343 299 11 159 49.3 31.5 2.18 7.33 27600 

31 W27X102 102 30 27.1 10 0.515 0.83 6.03 47.1 3620 305 267 11 139 43.4 27.8 2.15 5.28 24000 

32 W27X94 94 27.7 26.9 10 0.49 0.745 6.7 49.5 3270 278 243 10.9 124 38.8 24.8 2.12 4.03 21300 

33 W27X84 84 24.8 26.7 10 0.46 0.64 7.78 52.7 2850 244 213 10.7 106 33.2 21.2 2.07 2.81 17900 

34 W24X192 192 56.3 25.5 13 0.81 1.46 4.43 26.6 6260 559 491 10.5 530 126 81.8 3.07 30.8 76300 

35 W24X176 176 51.7 25.2 12.9 0.75 1.34 4.81 28.7 5680 511 450 10.5 479 115 74.3 3.04 23.9 68400 

36 W24X162 162 47.7 25 13 0.705 1.22 5.31 30.6 5170 468 414 10.4 443 105 68.4 3.05 18.5 62600 

37 W24X146 146 43 24.7 12.9 0.65 1.09 5.92 33.2 4580 418 371 10.3 391 93.2 60.5 3.01 13.4 54600 

38 W24X131 131 38.5 24.5 12.9 0.605 0.96 6.7 35.6 4020 370 329 10.2 340 81.5 53 2.97 9.5 47100 

39 W24X117 117 34.4 24.3 12.8 0.55 0.85 7.53 39.2 3540 327 291 10.1 297 71.4 46.5 2.94 6.72 40800 

40 W24X104 104 30.6 24.1 12.8 0.5 0.75 8.5 43.1 3100 289 258 10.1 259 62.4 40.7 2.91 4.72 35200 

41 W24X103 103 30.3 24.5 9 0.55 0.98 4.59 39.2 3000 280 245 10 119 41.5 26.5 1.99 7.07 16600 

42 W24X94 94 27.7 24.3 9.07 0.515 0.875 5.18 41.9 2700 254 222 9.87 109 37.5 24 1.98 5.26 15000 

43 W24X84 84 24.7 24.1 9.02 0.47 0.77 5.86 45.9 2370 224 196 9.79 94.4 32.6 20.9 1.95 3.7 12800 

44 W24X76 76 22.4 23.9 8.99 0.44 0.68 6.61 49 2100 200 176 9.69 82.5 28.6 18.4 1.92 2.68 11100 

45 W24X68 68 20.1 23.7 8.97 0.415 0.585 7.66 52 1830 177 154 9.55 70.4 24.5 15.7 1.87 1.87 9430 

46 W24X62 62 18.2 23.7 7.04 0.43 0.59 5.97 50.1 1550 153 131 9.23 34.5 15.7 9.8 1.38 1.71 4620 

47 W24X55 55 16.2 23.6 7.01 0.395 0.505 6.94 54.6 1350 134 114 9.11 29.1 13.3 8.3 1.34 1.18 3870 

48 W21X182 182 53.6 22.7 12.5 0.83 1.48 4.22 22.6 4730 476 417 9.4 483 119 77.2 3 30.7 54400 

49 W21X166 166 48.8 22.5 12.4 0.75 1.36 4.57 25 4280 432 380 9.36 435 108 70 2.99 23.6 48500 

50 W21X147 147 43.2 22.1 12.5 0.72 1.15 5.44 26.1 3630 373 329 9.17 376 92.6 60.1 2.95 15.4 41100 

51 W21X132 132 38.8 21.8 12.4 0.65 1.04 6.01 28.9 3220 333 295 9.12 333 82.3 53.5 2.93 11.3 36000 

52 W21X122 122 35.9 21.7 12.4 0.6 0.96 6.45 31.3 2960 307 273 9.09 305 75.6 49.2 2.92 8.98 32700 

53 W21X111 111 32.7 21.5 12.3 0.55 0.875 7.05 34.1 2670 279 249 9.05 274 68.2 44.5 2.9 6.83 29200 

54 W21X101 101 29.8 21.4 12.3 0.5 0.8 7.68 37.5 2420 253 227 9.02 248 61.7 40.3 2.89 5.21 26200 

55 W21X93 93 27.3 21.6 8.42 0.58 0.93 4.53 32.3 2070 221 192 8.7 92.9 34.7 22.1 1.84 6.03 9940 

56 W21X83 83 24.3 21.4 8.36 0.515 0.835 5 36.4 1830 196 171 8.67 81.4 30.5 19.5 1.83 4.34 8630 

57 W21X73 73 21.5 21.2 8.3 0.455 0.74 5.6 41.2 1600 172 151 8.64 70.6 26.6 17 1.81 3.02 7410 

58 W21X68 68 20 21.1 8.27 0.43 0.685 6.04 43.6 1480 160 140 8.6 64.7 24.4 15.7 1.8 2.45 6760 

59 W21X62 62 18.3 21 8.24 0.4 0.615 6.7 46.9 1330 144 127 8.54 57.5 21.7 14 1.77 1.83 5960 

60 W21X55 55 16.2 20.8 8.22 0.375 0.522 7.87 50 1140 126 110 8.4 48.4 18.4 11.8 1.73 1.24 4980 

61 W21X48 48 14.1 20.6 8.14 0.35 0.43 9.47 53.6 959 107 93 8.24 38.7 14.9 9.52 1.66 0.803 3950 
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62 W21X57 57 16.7 21.1 6.56 0.405 0.65 5.04 46.3 1170 129 111 8.36 30.6 14.8 9.35 1.35 1.77 3190 

63 W21X50 50 14.7 20.8 6.53 0.38 0.535 6.1 49.4 984 110 94.5 8.18 24.9 12.2 7.64 1.3 1.14 2570 

64 W21X44 44 13 20.7 6.5 0.35 0.45 7.22 53.6 843 95.4 81.6 8.06 20.7 10.2 6.37 1.26 0.77 2110 

65 W18x192 192 56.4 20.4 11.5 0.96 1.75 3.27 16.7 3870 442 380 8.28 440 119 76.8 2.79 44.7 38000 

66 W18X175 175 51.3 20 11.4 0.89 1.59 3.58 18 3450 398 344 8.2 391 106 68.8 2.76 33.8 33300 

67 W18X158 158 46.3 19.7 11.3 0.81 1.44 3.92 19.8 3060 356 310 8.12 347 94.8 61.4 2.74 25.2 29000 

68 W18X143 143 42.1 19.5 11.2 0.73 1.32 4.25 22 2750 322 282 8.09 311 85.4 55.5 2.72 19.2 25700 

69 W18X130 130 38.2 19.3 11.2 0.67 1.2 4.65 23.9 2460 290 256 8.03 278 76.7 49.9 2.7 14.5 22700 

70 W18X119 119 35.1 19 11.3 0.655 1.06 5.31 24.5 2190 262 231 7.9 253 69.1 44.9 2.69 10.6 20300 

71 W18X106 106 31.1 18.7 11.2 0.59 0.94 5.96 27.2 1910 230 204 7.84 220 60.5 39.4 2.66 7.48 17400 

72 W18X97 97 28.5 18.6 11.1 0.535 0.87 6.41 30 1750 211 188 7.82 201 55.3 36.1 2.65 5.86 15800 

73 W18X86 86 25.3 18.4 11.1 0.48 0.77 7.2 33.4 1530 186 166 7.77 175 48.4 31.6 2.63 4.1 13600 

74 W18X76 76 22.3 18.2 11 0.425 0.68 8.11 37.8 1330 163 146 7.73 152 42.2 27.6 2.61 2.83 11700 

75 W18X71 71 20.8 18.5 7.64 0.495 0.81 4.71 32.4 1170 146 127 7.5 60.3 24.7 15.8 1.7 3.49 4700 

76 W18X65 65 19.1 18.4 7.59 0.45 0.75 5.06 35.7 1070 133 117 7.49 54.8 22.5 14.4 1.69 2.73 4240 

77 W18X60 60 17.6 18.2 7.56 0.415 0.695 5.44 38.7 984 123 108 7.47 50.1 20.6 13.3 1.68 2.17 3850 

78 W18X55 55 16.2 18.1 7.53 0.39 0.63 5.98 41.1 890 112 98.3 7.41 44.9 18.5 11.9 1.67 1.66 3430 

79 W18X50 50 14.7 18 7.5 0.355 0.57 6.57 45.2 800 101 88.9 7.38 40.1 16.6 10.7 1.65 1.24 3040 

80 W18X46 46 13.5 18.1 6.06 0.36 0.605 5.01 44.6 712 90.7 78.8 7.25 22.5 11.7 7.43 1.29 1.22 1720 

81 W18X40 40 11.8 17.9 6.02 0.315 0.525 5.73 50.9 612 78.4 68.4 7.21 19.1 10 6.35 1.27 0.81 1440 

82 W18X35 35 10.3 17.7 6 0.3 0.425 7.06 53.5 510 66.5 57.6 7.04 15.3 8.06 5.12 1.22 0.506 1140 

83 W16X100 100 29.5 17 10.4 0.585 0.985 5.29 24.3 1490 198 175 7.1 186 54.9 35.7 2.51 7.73 11900 

84 W16X89 89 26.2 16.8 10.4 0.525 0.875 5.92 27 1300 175 155 7.05 163 48.1 31.4 2.49 5.45 10200 

85 W16X77 77 22.6 16.5 10.3 0.455 0.76 6.77 31.2 1110 150 134 7 138 41.1 26.9 2.47 3.57 8590 

86 W16X67 67 19.7 16.3 10.2 0.395 0.665 7.7 35.9 954 130 117 6.96 119 35.5 23.2 2.46 2.39 7300 

87 W16X57 57 16.8 16.4 7.12 0.43 0.715 4.98 33 758 105 92.2 6.72 43.1 18.9 12.1 1.6 2.22 2660 

88 W16X50 50 14.7 16.3 7.07 0.38 0.63 5.61 37.4 659 92 81 6.68 37.2 16.3 10.5 1.59 1.52 2270 

89 W16X45 45 13.3 16.1 7.04 0.345 0.565 6.23 41.1 586 82.3 72.7 6.65 32.8 14.5 9.34 1.57 1.11 1990 

90 W16X40 40 11.8 16 7 0.305 0.505 6.93 46.5 518 73 64.7 6.63 28.9 12.7 8.25 1.57 0.794 1730 

91 W16X36 36 10.6 15.9 6.99 0.295 0.43 8.12 48.1 448 64 56.5 6.51 24.5 10.8 7 1.52 0.545 1460 

92 W16X31 31 9.13 15.9 5.53 0.275 0.44 6.28 51.6 375 54 47.2 6.41 12.4 7.03 4.49 1.17 0.461 739 

93 W16X26 26 7.68 15.7 5.5 0.25 0.345 7.97 56.8 301 44.2 38.4 6.26 9.59 5.48 3.49 1.12 0.262 565 

94 W14X193 193 56.8 15.5 15.7 0.89 1.44 5.45 12.8 2400 355 310 6.5 931 180 119 4.05 34.8 45900 

95 W14X176 176 51.8 15.2 15.7 0.83 1.31 5.97 13.7 2140 320 281 6.43 838 163 107 4.02 26.5 40500 

96 W14X159 159 46.7 15 15.6 0.745 1.19 6.54 15.3 1900 287 254 6.38 748 146 96.2 4 19.7 35600 
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97 W14X145 145 42.7 14.8 15.5 0.68 1.09 7.11 16.8 1710 260 232 6.33 677 133 87.3 3.98 15.2 31700 

98 W14X132 132 38.8 14.7 14.7 0.645 1.03 7.15 17.7 1530 234 209 6.28 548 113 74.5 3.76 12.3 25500 

99 W14X120 120 35.3 14.5 14.7 0.59 0.94 7.8 19.3 1380 212 190 6.24 495 102 67.5 3.74 9.37 22700 

100 W14X109 109 32 14.3 14.6 0.525 0.86 8.49 21.7 1240 192 173 6.22 447 92.7 61.2 3.73 7.12 20200 

101 W14X99 99 29.1 14.2 14.6 0.485 0.78 9.34 23.5 1110 173 157 6.17 402 83.6 55.2 3.71 5.37 18000 

102 W14X90 90 26.5 14 14.5 0.44 0.71 10.2 25.9 999 157 143 6.14 362 75.6 49.9 3.7 4.06 16000 

103 W14X82 82 24 14.3 10.1 0.51 0.855 5.92 22.4 881 139 123 6.05 148 44.8 29.3 2.48 5.07 6710 

104 W14X74 74 21.8 14.2 10.1 0.45 0.785 6.41 25.4 795 126 112 6.04 134 40.5 26.6 2.48 3.87 5990 

105 W14X68 68 20 14 10 0.415 0.72 6.97 27.5 722 115 103 6.01 121 36.9 24.2 2.46 3.01 5380 

106 W14X61 61 17.9 13.9 10 0.375 0.645 7.75 30.4 640 102 92.1 5.98 107 32.8 21.5 2.45 2.19 4710 

107 W14X53 53 15.6 13.9 8.06 0.37 0.66 6.11 30.9 541 87.1 77.8 5.89 57.7 22 14.3 1.92 1.94 2540 

108 W14X48 48 14.1 13.8 8.03 0.34 0.595 6.75 33.6 484 78.4 70.2 5.85 51.4 19.6 12.8 1.91 1.45 2240 

109 W14X43 43 12.6 13.7 8 0.305 0.53 7.54 37.4 428 69.6 62.6 5.82 45.2 17.3 11.3 1.89 1.05 1950 

110 W14X38 38 11.2 14.1 6.77 0.31 0.515 6.57 39.6 385 61.5 54.6 5.87 26.7 12.1 7.88 1.55 0.798 1230 

111 W14X34 34 10 14 6.75 0.285 0.455 7.41 43.1 340 54.6 48.6 5.83 23.3 10.6 6.91 1.53 0.569 1070 

112 W14X30 30 8.85 13.8 6.73 0.27 0.385 8.74 45.4 291 47.3 42 5.73 19.6 8.99 5.82 1.49 0.38 887 

113 W14X26 26 7.69 13.9 5.03 0.255 0.42 5.98 48.1 245 40.2 35.3 5.65 8.91 5.54 3.55 1.08 0.358 405 

114 W14X22 22 6.49 13.7 5 0.23 0.335 7.46 53.3 199 33.2 29 5.54 7 4.39 2.8 1.04 0.208 314 

115 W12X190 190 55.8 14.4 12.7 1.06 1.74 3.65 9.16 1890 311 263 5.82 589 143 93 3.25 48.8 23600 

116 W12X170 170 50 14 12.6 0.96 1.56 4.03 10.1 1650 275 235 5.74 517 126 82.3 3.22 35.6 20100 

117 W12X152 152 44.7 13.7 12.5 0.87 1.4 4.46 11.2 1430 243 209 5.66 454 111 72.8 3.19 25.8 17200 

118 W12X136 136 39.9 13.4 12.4 0.79 1.25 4.96 12.3 1240 214 186 5.58 398 98 64.2 3.16 18.5 14700 

119 W12X120 120 35.3 13.1 12.3 0.71 1.11 5.57 13.7 1070 186 163 5.51 345 85.4 56 3.13 12.9 12400 

120 W12X106 106 31.2 12.9 12.2 0.61 0.99 6.17 15.9 933 164 145 5.47 301 75.1 49.3 3.11 9.13 10700 

121 W12X96 96 28.2 12.7 12.2 0.55 0.9 6.76 17.7 833 147 131 5.44 270 67.5 44.4 3.09 6.85 9410 

122 W12X87 87 25.6 12.5 12.1 0.515 0.81 7.48 18.9 740 132 118 5.38 241 60.4 39.7 3.07 5.1 8270 

123 W12X79 79 23.2 12.4 12.1 0.47 0.735 8.22 20.7 662 119 107 5.34 216 54.3 35.8 3.05 3.84 7330 

124 W12X72 72 21.1 12.3 12 0.43 0.67 8.99 22.6 597 108 97.4 5.31 195 49.2 32.4 3.04 2.93 6540 

125 W12X65 65 19.1 12.1 12 0.39 0.605 9.92 24.9 533 96.8 87.9 5.28 174 44.1 29.1 3.02 2.18 5780 

126 W12X58 58 17 12.2 10 0.36 0.64 7.82 27 475 86.4 78 5.28 107 32.5 21.4 2.51 2.1 3570 

127 W12X53 53 15.6 12.1 10 0.345 0.575 8.69 28.1 425 77.9 70.6 5.23 95.8 29.1 19.2 2.48 1.58 3160 

128 W12X50 50 14.6 12.2 8.08 0.37 0.64 6.31 26.8 391 71.9 64.2 5.18 56.3 21.3 13.9 1.96 1.71 1880 

129 W12X45 45 13.1 12.1 8.05 0.335 0.575 7 29.6 348 64.2 57.7 5.15 50 19 12.4 1.95 1.26 1650 

130 W12X40 40 11.7 11.9 8.01 0.295 0.515 7.77 33.6 307 57 51.5 5.13 44.1 16.8 11 1.94 0.906 1440 

131 W12X35 35 10.3 12.5 6.56 0.3 0.52 6.31 36.2 285 51.2 45.6 5.25 24.5 11.5 7.47 1.54 0.741 879 
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132 W12X30 30 8.79 12.3 6.52 0.26 0.44 7.41 41.8 238 43.1 38.6 5.21 20.3 9.56 6.24 1.52 0.457 720 

133 W12X26 26 7.65 12.2 6.49 0.23 0.38 8.54 47.2 204 37.2 33.4 5.17 17.3 8.17 5.34 1.51 0.3 607 

134 W12X22 22 6.48 12.3 4.03 0.26 0.425 4.74 41.8 156 29.3 25.4 4.91 4.66 3.66 2.31 0.848 0.293 164 

135 W12X19 19 5.57 12.2 4.01 0.235 0.35 5.72 46.2 130 24.7 21.3 4.82 3.76 2.98 1.88 0.822 0.18 131 

136 W12X16 16 4.71 12 3.99 0.22 0.265 7.53 49.4 103 20.1 17.1 4.67 2.82 2.26 1.41 0.773 0.103 96.9 

137 W12X14 14 4.16 11.9 3.97 0.2 0.225 8.82 54.3 88.6 17.4 14.9 4.62 2.36 1.9 1.19 0.753 0.0704 80.4 

138 W10X112 112 32.9 11.4 10.4 0.755 1.25 4.17 10.4 716 147 126 4.66 236 69.2 45.3 2.68 15.1 6020 

139 W10X100 100 29.4 11.1 10.3 0.68 1.12 4.62 11.6 623 130 112 4.6 207 61 40 2.65 10.9 5150 

140 W10X88 88 25.9 10.8 10.3 0.605 0.99 5.18 13 534 113 98.5 4.54 179 53.1 34.8 2.63 7.53 4330 

141 W10X77 77 22.6 10.6 10.2 0.53 0.87 5.86 14.8 455 97.6 85.9 4.49 154 45.9 30.1 2.6 5.11 3630 

142 W10X68 68 20 10.4 10.1 0.47 0.77 6.58 16.7 394 85.3 75.7 4.44 134 40.1 26.4 2.59 3.56 3100 

143 W10X60 60 17.6 10.2 10.1 0.42 0.68 7.41 18.7 341 74.6 66.7 4.39 116 35 23 2.57 2.48 2640 

144 W10X54 54 15.8 10.1 10 0.37 0.615 8.15 21.2 303 66.6 60 4.37 103 31.3 20.6 2.56 1.82 2320 

145 W10X49 49 14.4 10 10 0.34 0.56 8.93 23.1 272 60.4 54.6 4.35 93.4 28.3 18.7 2.54 1.39 2070 

146 W10X45 45 13.3 10.1 8.02 0.35 0.62 6.47 22.5 248 54.9 49.1 4.32 53.4 20.3 13.3 2.01 1.51 1200 

147 W10X39 39 11.5 9.92 7.99 0.315 0.53 7.53 25 209 46.8 42.1 4.27 45 17.2 11.3 1.98 0.976 992 

148 W10X33 33 9.71 9.73 7.96 0.29 0.435 9.15 27.1 171 38.8 35 4.19 36.6 14 9.2 1.94 0.583 791 

149 W10X30 30 8.84 10.5 5.81 0.3 0.51 5.7 29.5 170 36.6 32.4 4.38 16.7 8.84 5.75 1.37 0.622 414 

150 W10X26 26 7.61 10.3 5.77 0.26 0.44 6.56 34 144 31.3 27.9 4.35 14.1 7.5 4.89 1.36 0.402 345 

151 W10X22 22 6.49 10.2 5.75 0.24 0.36 7.99 36.9 118 26 23.2 4.27 11.4 6.1 3.97 1.33 0.239 275 

152 W10X19 19 5.62 10.2 4.02 0.25 0.395 5.09 35.4 96.3 21.6 18.8 4.14 4.29 3.35 2.14 0.874 0.233 104 

153 W10X17 17 4.99 10.1 4.01 0.24 0.33 6.08 36.9 81.9 18.7 16.2 4.05 3.56 2.8 1.78 0.845 0.156 85.1 

154 W10X15 15 4.41 10 4 0.23 0.27 7.41 38.5 68.9 16 13.8 3.95 2.89 2.3 1.45 0.81 0.104 68.3 

155 W10X12 12 3.54 9.87 3.96 0.19 0.21 9.43 46.6 53.8 12.6 10.9 3.9 2.18 1.74 1.1 0.785 0.0547 50.9 

156 W8X67 67 19.7 9 8.28 0.57 0.935 4.43 11.1 272 70.1 60.4 3.72 88.6 32.7 21.4 2.12 5.05 1440 

157 W8X58 58 17.1 8.75 8.22 0.51 0.81 5.07 12.4 228 59.8 52 3.65 75.1 27.9 18.3 2.1 3.33 1180 

158 W8X48 48 14.1 8.5 8.11 0.4 0.685 5.92 15.9 184 49 43.2 3.61 60.9 22.9 15 2.08 1.96 931 

159 W8X40 40 11.7 8.25 8.07 0.36 0.56 7.21 17.6 146 39.8 35.5 3.53 49.1 18.5 12.2 2.04 1.12 726 

160 W8X35 35 10.3 8.12 8.02 0.31 0.495 8.1 20.5 127 34.7 31.2 3.51 42.6 16.1 10.6 2.03 0.769 619 

161 W8X31 31 9.12 8 8 0.285 0.435 9.19 22.3 110 30.4 27.5 3.47 37.1 14.1 9.27 2.02 0.536 530 

162 W8X28 28 8.24 8.06 6.54 0.285 0.465 7.03 22.3 98 27.2 24.3 3.45 21.7 10.1 6.63 1.62 0.537 312 

163 W8X24 24 7.08 7.93 6.5 0.245 0.4 8.12 25.9 82.7 23.1 20.9 3.42 18.3 8.57 5.63 1.61 0.346 259 

164 W8X21 21 6.16 8.28 5.27 0.25 0.4 6.59 27.5 75.3 20.4 18.2 3.49 9.77 5.69 3.71 1.26 0.282 152 

165 W8X18 18 5.26 8.14 5.25 0.23 0.33 7.95 29.9 61.9 17 15.2 3.43 7.97 4.66 3.04 1.23 0.172 122 

166 W8X15 15 4.44 8.11 4.01 0.245 0.315 6.37 28.1 48 13.6 11.8 3.29 3.41 2.67 1.7 0.876 0.137 51.8 
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167 W8X13 13 3.84 7.99 4 0.23 0.255 7.84 29.9 39.6 11.4 9.91 3.21 2.73 2.15 1.37 0.843 0.0871 40.8 

168 W8X10 10 2.96 7.89 3.94 0.17 0.205 9.61 40.5 30.8 8.87 7.81 3.22 2.09 1.66 1.06 0.841 0.0426 30.9 

 

2- Selected Catalog Section   (SCS): 

2.1      Column catalog sections. 

No. 
AISC Sections  

< 200 Ib 

Weight 
(W)  
Ib/ft 

Area 
(A) 
 in

2 
 

Depth 
(D)  
in 

 
Width 
(BF) 
 in 

tw 
in 

tf 
in 

bf / 2tf h / tw 
Ix 
in

4
 

Zx 
in

3
 

Sx 
in

3
 

rx 
in

3
 

Iy 
in

4
 

Zy 
in

3
 

Sy 
in

3
 

ry 
in

3
 

J CW 

76 W27X178 178 52.5 27.8 14.1 0.725 1.19 5.92 32.9 7020 570 505 11.6 555 122 78.8 3.25 20.1 98400 

77 W27X161 161 47.6 27.6 14 0.66 1.08 6.49 36.1 6310 515 458 11.5 497 109 70.9 3.23 15.1 87300 

78 W27X146 146 43.1 27.4 14 0.605 0.975 7.16 39.4 5660 464 414 11.5 443 97.7 63.5 3.2 11.3 77200 

79 W24X192 192 56.3 25.5 13 0.81 1.46 4.43 26.6 6260 559 491 10.5 530 126 81.8 3.07 30.8 76300 

80 W24X176 176 51.7 25.2 12.9 0.75 1.34 4.81 28.7 5680 511 450 10.5 479 115 74.3 3.04 23.9 68400 

81 W24X162 162 47.7 25 13 0.705 1.22 5.31 30.6 5170 468 414 10.4 443 105 68.4 3.05 18.5 62600 

82 W24X146 146 43 24.7 12.9 0.65 1.09 5.92 33.2 4580 418 371 10.3 391 93.2 60.5 3.01 13.4 54600 

83 W24X131 131 38.5 24.5 12.9 0.605 0.96 6.7 35.6 4020 370 329 10.2 340 81.5 53 2.97 9.5 47100 

84 W24X117 117 34.4 24.3 12.8 0.55 0.85 7.53 39.2 3540 327 291 10.1 297 71.4 46.5 2.94 6.72 40800 

85 W24X104 104 30.6 24.1 12.8 0.5 0.75 8.5 43.1 3100 289 258 10.1 259 62.4 40.7 2.91 4.72 35200 

86 W21X182 182 53.6 22.7 12.5 0.83 1.48 4.22 22.6 4730 476 417 9.4 483 119 77.2 3 30.7 54400 

87 W21X166 166 48.8 22.5 12.4 0.75 1.36 4.57 25 4280 432 380 9.36 435 108 70 2.99 23.6 48500 

88 W21X147 147 43.2 22.1 12.5 0.72 1.15 5.44 26.1 3630 373 329 9.17 376 92.6 60.1 2.95 15.4 41100 

89 W21X132 132 38.8 21.8 12.4 0.65 1.04 6.01 28.9 3220 333 295 9.12 333 82.3 53.5 2.93 11.3 36000 

90 W21X122 122 35.9 21.7 12.4 0.6 0.96 6.45 31.3 2960 307 273 9.09 305 75.6 49.2 2.92 8.98 32700 

91 W21X111 111 32.7 21.5 12.3 0.55 0.875 7.05 34.1 2670 279 249 9.05 274 68.2 44.5 2.9 6.83 29200 

92 W21X101 101 29.8 21.4 12.3 0.5 0.8 7.68 37.5 2420 253 227 9.02 248 61.7 40.3 2.89 5.21 26200 

93 W18x192 192 56.4 20.4 11.5 0.96 1.75 3.27 16.7 3870 442 380 8.28 440 119 76.8 2.79 44.7 38000 

94 W18X175 175 51.3 20 11.4 0.89 1.59 3.58 18 3450 398 344 8.2 391 106 68.8 2.76 33.8 33300 

95 W18X158 158 46.3 19.7 11.3 0.81 1.44 3.92 19.8 3060 356 310 8.12 347 94.8 61.4 2.74 25.2 29000 

96 W18X143 143 42.1 19.5 11.2 0.73 1.32 4.25 22 2750 322 282 8.09 311 85.4 55.5 2.72 19.2 25700 

97 W18X130 130 38.2 19.3 11.2 0.67 1.2 4.65 23.9 2460 290 256 8.03 278 76.7 49.9 2.7 14.5 22700 

98 W18X119 119 35.1 19 11.3 0.655 1.06 5.31 24.5 2190 262 231 7.9 253 69.1 44.9 2.69 10.6 20300 

99 W18X106 106 31.1 18.7 11.2 0.59 0.94 5.96 27.2 1910 230 204 7.84 220 60.5 39.4 2.66 7.48 17400 
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100 W18X97 97 28.5 18.6 11.1 0.535 0.87 6.41 30 1750 211 188 7.82 201 55.3 36.1 2.65 5.86 15800 

101 W18X86 86 25.3 18.4 11.1 0.48 0.77 7.2 33.4 1530 186 166 7.77 175 48.4 31.6 2.63 4.1 13600 

102 W18X76 76 22.3 18.2 11 0.425 0.68 8.11 37.8 1330 163 146 7.73 152 42.2 27.6 2.61 2.83 11700 

103 W16X100 100 29.5 17 10.4 0.585 0.985 5.29 24.3 1490 198 175 7.1 186 54.9 35.7 2.51 7.73 11900 

104 W16X89 89 26.2 16.8 10.4 0.525 0.875 5.92 27 1300 175 155 7.05 163 48.1 31.4 2.49 5.45 10200 

105 W16X77 77 22.6 16.5 10.3 0.455 0.76 6.77 31.2 1110 150 134 7 138 41.1 26.9 2.47 3.57 8590 

106 W16X67 67 19.7 16.3 10.2 0.395 0.665 7.7 35.9 954 130 117 6.96 119 35.5 23.2 2.46 2.39 7300 

107 W14X193 193 56.8 15.5 15.7 0.89 1.44 5.45 12.8 2400 355 310 6.5 931 180 119 4.05 34.8 45900 

108 W14X176 176 51.8 15.2 15.7 0.83 1.31 5.97 13.7 2140 320 281 6.43 838 163 107 4.02 26.5 40500 

109 W14X159 159 46.7 15 15.6 0.745 1.19 6.54 15.3 1900 287 254 6.38 748 146 96.2 4 19.7 35600 

110 W14X145 145 42.7 14.8 15.5 0.68 1.09 7.11 16.8 1710 260 232 6.33 677 133 87.3 3.98 15.2 31700 

111 W14X132 132 38.8 14.7 14.7 0.645 1.03 7.15 17.7 1530 234 209 6.28 548 113 74.5 3.76 12.3 25500 

112 W14X120 120 35.3 14.5 14.7 0.59 0.94 7.8 19.3 1380 212 190 6.24 495 102 67.5 3.74 9.37 22700 

113 W14X109 109 32 14.3 14.6 0.525 0.86 8.49 21.7 1240 192 173 6.22 447 92.7 61.2 3.73 7.12 20200 

114 W14X99 99 29.1 14.2 14.6 0.485 0.78 9.34 23.5 1110 173 157 6.17 402 83.6 55.2 3.71 5.37 18000 

115 W14X90 90 26.5 14 14.5 0.44 0.71 10.2 25.9 999 157 143 6.14 362 75.6 49.9 3.7 4.06 16000 

116 W14X82 82 24 14.3 10.1 0.51 0.855 5.92 22.4 881 139 123 6.05 148 44.8 29.3 2.48 5.07 6710 

117 W14X74 74 21.8 14.2 10.1 0.45 0.785 6.41 25.4 795 126 112 6.04 134 40.5 26.6 2.48 3.87 5990 

118 W14X68 68 20 14 10 0.415 0.72 6.97 27.5 722 115 103 6.01 121 36.9 24.2 2.46 3.01 5380 

119 W14X61 61 17.9 13.9 10 0.375 0.645 7.75 30.4 640 102 92.1 5.98 107 32.8 21.5 2.45 2.19 4710 

120 W14X53 53 15.6 13.9 8.06 0.37 0.66 6.11 30.9 541 87.1 77.8 5.89 57.7 22 14.3 1.92 1.94 2540 

121 W14X48 48 14.1 13.8 8.03 0.34 0.595 6.75 33.6 484 78.4 70.2 5.85 51.4 19.6 12.8 1.91 1.45 2240 

122 W14X43 43 12.6 13.7 8 0.305 0.53 7.54 37.4 428 69.6 62.6 5.82 45.2 17.3 11.3 1.89 1.05 1950 

123 W12X190 190 55.8 14.4 12.7 1.06 1.74 3.65 9.16 1890 311 263 5.82 589 143 93 3.25 48.8 23600 

124 W12X170 170 50 14 12.6 0.96 1.56 4.03 10.1 1650 275 235 5.74 517 126 82.3 3.22 35.6 20100 

125 W12X152 152 44.7 13.7 12.5 0.87 1.4 4.46 11.2 1430 243 209 5.66 454 111 72.8 3.19 25.8 17200 

126 W12X136 136 39.9 13.4 12.4 0.79 1.25 4.96 12.3 1240 214 186 5.58 398 98 64.2 3.16 18.5 14700 

127 W12X120 120 35.3 13.1 12.3 0.71 1.11 5.57 13.7 1070 186 163 5.51 345 85.4 56 3.13 12.9 12400 

128 W12X106 106 31.2 12.9 12.2 0.61 0.99 6.17 15.9 933 164 145 5.47 301 75.1 49.3 3.11 9.13 10700 

129 W12X96 96 28.2 12.7 12.2 0.55 0.9 6.76 17.7 833 147 131 5.44 270 67.5 44.4 3.09 6.85 9410 

130 W12X87 87 25.6 12.5 12.1 0.515 0.81 7.48 18.9 740 132 118 5.38 241 60.4 39.7 3.07 5.1 8270 

131 W12X79 79 23.2 12.4 12.1 0.47 0.735 8.22 20.7 662 119 107 5.34 216 54.3 35.8 3.05 3.84 7330 

132 W12X72 72 21.1 12.3 12 0.43 0.67 8.99 22.6 597 108 97.4 5.31 195 49.2 32.4 3.04 2.93 6540 

133 W12X65 65 19.1 12.1 12 0.39 0.605 9.92 24.9 533 96.8 87.9 5.28 174 44.1 29.1 3.02 2.18 5780 

134 W12X58 58 17 12.2 10 0.36 0.64 7.82 27 475 86.4 78 5.28 107 32.5 21.4 2.51 2.1 3570 
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135 W12X53 53 15.6 12.1 10 0.345 0.575 8.69 28.1 425 77.9 70.6 5.23 95.8 29.1 19.2 2.48 1.58 3160 

136 W12X50 50 14.6 12.2 8.08 0.37 0.64 6.31 26.8 391 71.9 64.2 5.18 56.3 21.3 13.9 1.96 1.71 1880 

137 W12X45 45 13.1 12.1 8.05 0.335 0.575 7 29.6 348 64.2 57.7 5.15 50 19 12.4 1.95 1.26 1650 

138 W12X40 40 11.7 11.9 8.01 0.295 0.515 7.77 33.6 307 57 51.5 5.13 44.1 16.8 11 1.94 0.906 1440 

139 W12X35 35 10.3 12.5 6.56 0.3 0.52 6.31 36.2 285 51.2 45.6 5.25 24.5 11.5 7.47 1.54 0.741 879 

140 W12X30 30 8.79 12.3 6.52 0.26 0.44 7.41 41.8 238 43.1 38.6 5.21 20.3 9.56 6.24 1.52 0.457 720 

141 W12X26 26 7.65 12.2 6.49 0.23 0.38 8.54 47.2 204 37.2 33.4 5.17 17.3 8.17 5.34 1.51 0.3 607 

142 W10X112 112 32.9 11.4 10.4 0.755 1.25 4.17 10.4 716 147 126 4.66 236 69.2 45.3 2.68 15.1 6020 

143 W10X100 100 29.4 11.1 10.3 0.68 1.12 4.62 11.6 623 130 112 4.6 207 61 40 2.65 10.9 5150 

144 W10X88 88 25.9 10.8 10.3 0.605 0.99 5.18 13 534 113 98.5 4.54 179 53.1 34.8 2.63 7.53 4330 

145 W10X77 77 22.6 10.6 10.2 0.53 0.87 5.86 14.8 455 97.6 85.9 4.49 154 45.9 30.1 2.6 5.11 3630 

146 W10X68 68 20 10.4 10.1 0.47 0.77 6.58 16.7 394 85.3 75.7 4.44 134 40.1 26.4 2.59 3.56 3100 

147 W10X60 60 17.6 10.2 10.1 0.42 0.68 7.41 18.7 341 74.6 66.7 4.39 116 35 23 2.57 2.48 2640 

148 W10X54 54 15.8 10.1 10 0.37 0.615 8.15 21.2 303 66.6 60 4.37 103 31.3 20.6 2.56 1.82 2320 

149 W10X49 49 14.4 10 10 0.34 0.56 8.93 23.1 272 60.4 54.6 4.35 93.4 28.3 18.7 2.54 1.39 2070 

150 W10X45 45 13.3 10.1 8.02 0.35 0.62 6.47 22.5 248 54.9 49.1 4.32 53.4 20.3 13.3 2.01 1.51 1200 

151 W10X39 39 11.5 9.92 7.99 0.315 0.53 7.53 25 209 46.8 42.1 4.27 45 17.2 11.3 1.98 0.976 992 

152 W10X33 33 9.71 9.73 7.96 0.29 0.435 9.15 27.1 171 38.8 35 4.19 36.6 14 9.2 1.94 0.583 791 

153 W10X30 30 8.84 10.5 5.81 0.3 0.51 5.7 29.5 170 36.6 32.4 4.38 16.7 8.84 5.75 1.37 0.622 414 

154 W10X26 26 7.61 10.3 5.77 0.26 0.44 6.56 34 144 31.3 27.9 4.35 14.1 7.5 4.89 1.36 0.402 345 

155 W10X22 22 6.49 10.2 5.75 0.24 0.36 7.99 36.9 118 26 23.2 4.27 11.4 6.1 3.97 1.33 0.239 275 

156 W8X67 67 19.7 9 8.28 0.57 0.935 4.43 11.1 272 70.1 60.4 3.72 88.6 32.7 21.4 2.12 5.05 1440 

157 W8X58 58 17.1 8.75 8.22 0.51 0.81 5.07 12.4 228 59.8 52 3.65 75.1 27.9 18.3 2.1 3.33 1180 

158 W8X48 48 14.1 8.5 8.11 0.4 0.685 5.92 15.9 184 49 43.2 3.61 60.9 22.9 15 2.08 1.96 931 

159 W8X40 40 11.7 8.25 8.07 0.36 0.56 7.21 17.6 146 39.8 35.5 3.53 49.1 18.5 12.2 2.04 1.12 726 

160 W8X35 35 10.3 8.12 8.02 0.31 0.495 8.1 20.5 127 34.7 31.2 3.51 42.6 16.1 10.6 2.03 0.769 619 

161 W8X31 31 9.12 8 8 0.285 0.435 9.19 22.3 110 30.4 27.5 3.47 37.1 14.1 9.27 2.02 0.536 530 

162 W8X28 28 8.24 8.06 6.54 0.285 0.465 7.03 22.3 98 27.2 24.3 3.45 21.7 10.1 6.63 1.62 0.537 312 

163 W8X24 24 7.08 7.93 6.5 0.245 0.4 8.12 25.9 82.7 23.1 20.9 3.42 18.3 8.57 5.63 1.61 0.346 259 

164 W8X21 21 6.16 8.28 5.27 0.25 0.4 6.59 27.5 75.3 20.4 18.2 3.49 9.77 5.69 3.71 1.26 0.282 152 

165 W8X18 18 5.26 8.14 5.25 0.23 0.33 7.95 29.9 61.9 17 15.2 3.43 7.97 4.66 3.04 1.23 0.172 122 

166 W8X15 15 4.44 8.11 4.01 0.245 0.315 6.37 28.1 48 13.6 11.8 3.29 3.41 2.67 1.7 0.876 0.137 51.8 

167 W8X13 13 3.84 7.99 4 0.23 0.255 7.84 29.9 39.6 11.4 9.91 3.21 2.73 2.15 1.37 0.843 0.0871 40.8 

168 W8X10 10 2.96 7.89 3.94 0.17 0.205 9.61 40.5 30.8 8.87 7.81 3.22 2.09 1.66 1.06 0.841 0.0426 30.9 
 

 



www.manaraa.com

97 
 

2.2     Beam catalog sections: 

No. 
AISC Sections  

< 200 Ib 

Weigth 
(W)  
Ib/ft 

Area 
(A) 
 in

2 
 

Depth 
(D)  
in 

 
Width 
(BF) 
 in 

tw 
in 

tf 
in 

bf / 2tf h / tw 
Ix 
in

4
 

Zx 
in

3
 

Sx 
in

3
 

rx 
in

3
 

Iy 
in

4
 

Zy 
in

3
 

Sy 
in

3
 

ry 
in

3
 

J CW 

1 W40X199 199 58.5 38.7 15.8 0.650 1.07 7.39 52.6 14900 869 770 16.0 695 137 88.2 3.45 18.3 246000 

2 W40X183 183 53.3 39.0 11.8 0.650 1.20 4.92 52.6 13200 774 675 15.7 331 88.3 56.0 2.49 19.3 118000 

3 W40X167 167 49.2 38.6 11.8 0.650 1.03 5.76 52.6 11600 693 600 15.3 283 76.0 47.9 2.40 14.0 99700 

4 W40X149 149 43.8 38.2 11.8 0.630 0.830 7.11 54.3 9800 598 513 15.0 229 62.2 38.8 2.29 9.36 80000 

5 W36X194 194 57.0 36.5 12.1 0.765 1.26 4.81 42.4 12100 767 664 14.6 375 97.7 61.9 2.56 22.2 116000 

6 W36X182 182 53.6 36.3 12.1 0.725 1.18 5.12 44.8 11300 718 623 14.5 347 90.7 57.6 2.55 18.5 107000 

7 W36X170 170 50.1 36.2 12.0 0.680 1.10 5.47 47.7 10500 668 581 14.5 320 83.8 53.2 2.53 15.1 98500 

8 W36X160 160 47.0 36.0 12.0 0.650 1.02 5.88 49.9 9760 624 542 14.4 295 77.3 49.1 2.50 12.4 90200 

9 W36X150 150 44.2 35.9 12.0 0.625 0.940 6.37 51.9 9040 581 504 14.3 270 70.9 45.1 2.47 10.1 82200 

10 W36X135 135 39.7 35.6 12.0 0.600 0.790 7.56 54.1 7800 509 439 14.0 225 59.7 37.7 2.38 7.00 68100 

11 W33X169 169 49.5 33.8 11.5 0.670 1.22 4.71 44.7 9290 629 549 13.7 310 84.4 53.9 2.50 17.7 82400 

12 W33X152 152 44.8 33.5 11.6 0.635 1.06 5.48 47.2 8160 559 487 13.5 273 73.9 47.2 2.47 12.4 71700 

13 W33X141 141 41.6 33.3 11.5 0.605 0.960 6.01 49.6 7450 514 448 13.4 246 66.9 42.7 2.43 9.70 64400 

14 W33X130 130 38.3 33.1 11.5 0.580 0.855 6.73 51.7 6710 467 406 13.2 218 59.5 37.9 2.39 7.37 56600 

15 W33X118 118 34.7 32.9 11.5 0.550 0.740 7.76 54.5 5900 415 359 13.0 187 51.3 32.6 2.32 5.30 48300 

16 W30X191 191 56.3 30.7 15.0 0.710 1.19 6.35 37.7 9200 675 600 12.8 673 138 89.5 3.46 21.0 146000 

17 W30X173 173 51.0 30.4 15.0 0.655 1.07 7.04 40.8 8230 607 541 12.7 598 123 79.8 3.42 15.6 129000 

18 W30X148 148 43.5 30.7 10.5 0.650 1.18 4.44 41.6 6680 500 436 12.4 227 68.0 43.3 2.28 14.5 49400 

19 W30X132 132 38.9 30.3 10.5 0.615 1.00 5.27 43.9 5770 437 380 12.2 196 58.4 37.2 2.25 9.72 42100 

20 W30X124 124 36.5 30.2 10.5 0.585 0.930 5.65 46.2 5360 408 355 12.1 181 54.0 34.4 2.23 7.99 38600 

21 W30X116 116 34.2 30.0 10.5 0.565 0.850 6.17 47.8 4930 378 329 12.0 164 49.2 31.3 2.19 6.43 34900 

22 W30X108 108 31.7 29.8 10.5 0.545 0.760 6.89 49.6 4470 346 299 11.9 146 43.9 27.9 2.15 4.99 30900 

23 W30X99 99.0 29.1 29.7 10.5 0.520 0.670 7.80 51.9 3990 312 269 11.7 128 38.6 24.5 2.10 3.77 26800 

24 W30X90 90.0 26.4 29.5 10.4 0.470 0.610 8.52 57.5 3610 283 245 11.7 115 34.7 22.1 2.09 2.84 24000 

25 W27X194 194 57.2 28.1 14.0 0.750 1.34 5.24 31.8 7860 631 559 11.7 619 136 88.1 3.29 27.1 111000 

26 W27X129 129 37.8 27.6 10.0 0.610 1.10 4.55 39.7 4760 395 345 11.2 184 57.6 36.8 2.21 11.1 32500 

27 W27X114 114 33.5 27.3 10.1 0.570 0.930 5.41 42.5 4080 343 299 11.0 159 49.3 31.5 2.18 7.33 27600 

28 W27X102 102 30.0 27.1 10.0 0.515 0.830 6.03 47.1 3620 305 267 11.0 139 43.4 27.8 2.15 5.28 24000 

29 W27X94 94.0 27.7 26.9 10.0 0.490 0.745 6.70 49.5 3270 278 243 10.9 124 38.8 24.8 2.12 4.03 21300 
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30 W27X84 84.0 24.8 26.7 10.0 0.460 0.640 7.78 52.7 2850 244 213 10.7 106 33.2 21.2 2.07 2.81 17900 

31 W24X103 103 30.3 24.5 9.00 0.550 0.980 4.59 39.2 3000 280 245 10.0 119 41.5 26.5 1.99 7.07 16600 

32 W24X94 94.0 27.7 24.3 9.07 0.515 0.875 5.18 41.9 2700 254 222 9.87 109 37.5 24.0 1.98 5.26 15000 

33 W24X84 84.0 24.7 24.1 9.02 0.470 0.770 5.86 45.9 2370 224 196 9.79 94.4 32.6 20.9 1.95 3.70 12800 

34 W24X76 76.0 22.4 23.9 8.99 0.440 0.680 6.61 49.0 2100 200 176 9.69 82.5 28.6 18.4 1.92 2.68 11100 

35 W24X68 68.0 20.1 23.7 8.97 0.415 0.585 7.66 52.0 1830 177 154 9.55 70.4 24.5 15.7 1.87 1.87 9430 

36 W24X62 62.0 18.2 23.7 7.04 0.430 0.590 5.97 50.1 1550 153 131 9.23 34.5 15.7 9.80 1.38 1.71 4620 

37 W24X55 55.0 16.2 23.6 7.01 0.395 0.505 6.94 54.6 1350 134 114 9.11 29.1 13.3 8.30 1.34 1.18 3870 

38 W21X93 93.0 27.3 21.6 8.42 0.580 0.930 4.53 32.3 2070 221 192 8.70 92.9 34.7 22.1 1.84 6.03 9940 

39 W21X83 83.0 24.3 21.4 8.36 0.515 0.835 5.00 36.4 1830 196 171 8.67 81.4 30.5 19.5 1.83 4.34 8630 

40 W21X73 73.0 21.5 21.2 8.30 0.455 0.740 5.60 41.2 1600 172 151 8.64 70.6 26.6 17.0 1.81 3.02 7410 

41 W21X68 68.0 20.0 21.1 8.27 0.430 0.685 6.04 43.6 1480 160 140 8.60 64.7 24.4 15.7 1.80 2.45 6760 

42 W21X62 62.0 18.3 21.0 8.24 0.400 0.615 6.70 46.9 1330 144 127 8.54 57.5 21.7 14.0 1.77 1.83 5960 

43 W21X55 55.0 16.2 20.8 8.22 0.375 0.522 7.87 50.0 1140 126 110 8.40 48.4 18.4 11.8 1.73 1.24 4980 

44 W21X48 48.0 14.1 20.6 8.14 0.350 0.430 9.47 53.6 959 107 93.0 8.24 38.7 14.9 9.52 1.66 0.803 3950 

45 W21X57 57.0 16.7 21.1 6.56 0.405 0.650 5.04 46.3 1170 129 111 8.36 30.6 14.8 9.35 1.35 1.77 3190 

46 W21X50 50.0 14.7 20.8 6.53 0.380 0.535 6.10 49.4 984 110 94.5 8.18 24.9 12.2 7.64 1.30 1.14 2570 

47 W21X44 44.0 13.0 20.7 6.50 0.350 0.450 7.22 53.6 843 95.4 81.6 8.06 20.7 10.2 6.37 1.26 0.770 2110 

48 W18X71 71.0 20.8 18.5 7.64 0.495 0.810 4.71 32.4 1170 146 127 7.50 60.3 24.7 15.8 1.70 3.49 4700 

49 W18X65 65.0 19.1 18.4 7.59 0.450 0.750 5.06 35.7 1070 133 117 7.49 54.8 22.5 14.4 1.69 2.73 4240 

50 W18X60 60.0 17.6 18.2 7.56 0.415 0.695 5.44 38.7 984 123 108 7.47 50.1 20.6 13.3 1.68 2.17 3850 

51 W18X55 55.0 16.2 18.1 7.53 0.390 0.630 5.98 41.1 890 112 98.3 7.41 44.9 18.5 11.9 1.67 1.66 3430 

52 W18X50 50.0 14.7 18.0 7.50 0.355 0.570 6.57 45.2 800 101 88.9 7.38 40.1 16.6 10.7 1.65 1.24 3040 

53 W18X46 46.0 13.5 18.1 6.06 0.360 0.605 5.01 44.6 712 90.7 78.8 7.25 22.5 11.7 7.43 1.29 1.22 1720 

54 W18X40 40.0 11.8 17.9 6.02 0.315 0.525 5.73 50.9 612 78.4 68.4 7.21 19.1 10.0 6.35 1.27 0.810 1440 

55 W18X35 35.0 10.3 17.7 6.00 0.300 0.425 7.06 53.5 510 66.5 57.6 7.04 15.3 8.06 5.12 1.22 0.506 1140 

56 W16X57 57.0 16.8 16.4 7.12 0.430 0.715 4.98 33.0 758 105 92.2 6.72 43.1 18.9 12.1 1.60 2.22 2660 

57 W16X50 50.0 14.7 16.3 7.07 0.380 0.630 5.61 37.4 659 92.0 81.0 6.68 37.2 16.3 10.5 1.59 1.52 2270 

58 W16X45 45.0 13.3 16.1 7.04 0.345 0.565 6.23 41.1 586 82.3 72.7 6.65 32.8 14.5 9.34 1.57 1.11 1990 

59 W16X40 40.0 11.8 16.0 7.00 0.305 0.505 6.93 46.5 518 73.0 64.7 6.63 28.9 12.7 8.25 1.57 0.794 1730 

60 W16X36 36.0 10.6 15.9 6.99 0.295 0.430 8.12 48.1 448 64.0 56.5 6.51 24.5 10.8 7.00 1.52 0.545 1460 

61 W16X31 31.0 9.13 15.9 5.53 0.275 0.440 6.28 51.6 375 54.0 47.2 6.41 12.4 7.03 4.49 1.17 0.461 739 

62 W16X26 26.0 7.68 15.7 5.50 0.250 0.345 7.97 56.8 301 44.2 38.4 6.26 9.59 5.48 3.49 1.12 0.262 565 

63 W14X38 38.0 11.2 14.1 6.77 0.310 0.515 6.57 39.6 385 61.5 54.6 5.87 26.7 12.1 7.88 1.55 0.798 1230 

64 W14X34 34.0 10.0 14.0 6.75 0.285 0.455 7.41 43.1 340 54.6 48.6 5.83 23.3 10.6 6.91 1.53 0.569 1070 
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65 W14X30 30.0 8.85 13.8 6.73 0.270 0.385 8.74 45.4 291 47.3 42.0 5.73 19.6 8.99 5.82 1.49 0.380 887 

66 W14X26 26.0 7.69 13.9 5.03 0.255 0.420 5.98 48.1 245 40.2 35.3 5.65 8.91 5.54 3.55 1.08 0.358 405 

67 W14X22 22.0 6.49 13.7 5.00 0.230 0.335 7.46 53.3 199 33.2 29.0 5.54 7.00 4.39 2.80 1.04 0.208 314 

68 W12X22 22.0 6.48 12.3 4.03 0.260 0.425 4.74 41.8 156 29.3 25.4 4.91 4.66 3.66 2.31 0.848 0.293 164 

69 W12X19 19.0 5.57 12.2 4.01 0.235 0.350 5.72 46.2 130 24.7 21.3 4.82 3.76 2.98 1.88 0.822 0.180 131 

70 W12X16 16.0 4.71 12.0 3.99 0.220 0.265 7.53 49.4 103 20.1 17.1 4.67 2.82 2.26 1.41 0.773 0.103 96.9 

71 W12X14 14.0 4.2 11.9 4.0 0.2 0.2 8.8 54.3 88.6 17.4 14.9 4.6 2.4 1.9 1.2 0.8 0.1 80.4 

72 W10X19 19.0 5.6 10.2 4.0 0.3 0.4 5.1 35.4 96.3 21.6 18.8 4.1 4.3 3.4 2.1 0.9 0.2 104.0 

73 W10X17 17.0 5.0 10.1 4.0 0.2 0.3 6.1 36.9 81.9 18.7 16.2 4.1 3.6 2.8 1.8 0.8 0.2 85.1 

74 W10X15 15.0 4.4 10.0 4.0 0.2 0.3 7.4 38.5 68.9 16.0 13.8 4.0 2.9 2.3 1.5 0.8 0.1 68.3 

75 W10X12 12.0 3.5 9.9 4.0 0.2 0.2 9.4 46.6 53.8 12.6 10.9 3.9 2.2 1.7 1.1 0.8 0.1 50.9 
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